{ "cells": [ { "cell_type": "markdown", "id": "5292d317", "metadata": {}, "source": [ "# Fixed Frequency Transmon\n", "This notebook shows a typical tuneup sequence for fixed frequency transmon qubits.\n", "The notebook aims to be as compact as possible, for more details, please refer to the respective experiments." ] }, { "cell_type": "markdown", "id": "eea8eef1", "metadata": {}, "source": [ "# Time of flight measurement\n", "Here show how to measure time of flight for your system.\n", "This is useful to calibrate the acquisition delay for subsequent experiments." ] }, { "cell_type": "code", "execution_count": 1, "id": "a68aad66", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:30.227668Z", "iopub.status.busy": "2024-11-13T02:36:30.227246Z", "iopub.status.idle": "2024-11-13T02:36:31.928551Z", "shell.execute_reply": "2024-11-13T02:36:31.927685Z" }, "tags": [ "imports" ] }, "outputs": [], "source": [ "import json\n", "from functools import partial\n", "from typing import Literal\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "import rich # noqa:F401\n", "from qcodes.parameters import ManualParameter\n", "from sklearn.metrics import ConfusionMatrixDisplay\n", "\n", "import quantify_core.data.handling as dh\n", "from quantify_core.analysis.readout_calibration_analysis import ReadoutCalibrationAnalysis\n", "from quantify_core.analysis.time_of_flight_analysis import TimeOfFlightAnalysis\n", "from quantify_scheduler import Schedule\n", "from quantify_scheduler.backends.qblox import constants\n", "from quantify_scheduler.device_under_test.quantum_device import QuantumDevice\n", "from quantify_scheduler.enums import BinMode\n", "from quantify_scheduler.gettables import ScheduleGettable\n", "from quantify_scheduler.math import closest_number_ceil\n", "from quantify_scheduler.operations.gate_library import Measure, Reset, Rxy, X\n", "from quantify_scheduler.operations.pulse_library import IdlePulse\n", "from quantify_scheduler.schedules.timedomain_schedules import ramsey_sched\n", "\n", "from utils import initialize_hardware, run # noqa:F401" ] }, { "cell_type": "code", "execution_count": 2, "id": "e1954073", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:31.931745Z", "iopub.status.busy": "2024-11-13T02:36:31.930878Z", "iopub.status.idle": "2024-11-13T02:36:31.934676Z", "shell.execute_reply": "2024-11-13T02:36:31.934033Z" }, "tags": [ "config", "header_1" ] }, "outputs": [], "source": [ "hw_config_path = \"configs/tuning_transmon_coupled_pair_hardware_config.json\"\n", "device_path = \"devices/transmon_device_2q.json\"" ] }, { "cell_type": "code", "execution_count": 3, "id": "2dad16bb", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:31.936562Z", "iopub.status.busy": "2024-11-13T02:36:31.936383Z", "iopub.status.idle": "2024-11-13T02:36:31.940428Z", "shell.execute_reply": "2024-11-13T02:36:31.939750Z" }, "tags": [ "header_2" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "with open(hw_config_path) as hw_cfg_json_file:\n", " hardware_cfg = json.load(hw_cfg_json_file)\n", "\n", "# Enter your own dataset directory here!\n", "dh.set_datadir(dh.default_datadir())" ] }, { "cell_type": "code", "execution_count": 4, "id": "bb5b12a5", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:31.942273Z", "iopub.status.busy": "2024-11-13T02:36:31.942084Z", "iopub.status.idle": "2024-11-13T02:36:32.459879Z", "shell.execute_reply": "2024-11-13T02:36:32.459197Z" }, "tags": [ "header_3" ] }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1220: ValidationWarning: Setting `auto_lo_cal=on_lo_interm_freq_change` will overwrite settings `dc_offset_i=0.0` and `dc_offset_q=0.0`. To suppress this warning, do not set either `dc_offset_i` or `dc_offset_q` for this port-clock.\n", " warnings.warn(\n", "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] } ], "source": [ "quantum_device = QuantumDevice.from_json_file(device_path)\n", "qubit = quantum_device.get_element(\"q0\")\n", "quantum_device.hardware_config(hardware_cfg)\n", "meas_ctrl, _, cluster = initialize_hardware(quantum_device, ip=None)" ] }, { "cell_type": "markdown", "id": "dce7e5a9", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Schedule definition" ] }, { "cell_type": "code", "execution_count": 5, "id": "6951b400", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:32.462142Z", "iopub.status.busy": "2024-11-13T02:36:32.461922Z", "iopub.status.idle": "2024-11-13T02:36:32.465730Z", "shell.execute_reply": "2024-11-13T02:36:32.465040Z" } }, "outputs": [], "source": [ "def tof_trace_schedule(\n", " qubit_name: str,\n", " repetitions: int = 1,\n", ") -> Schedule:\n", " schedule = Schedule(\"Trace measurement schedule\", repetitions=repetitions)\n", " schedule.add(Measure(qubit_name, acq_protocol=\"Trace\"))\n", " return schedule" ] }, { "cell_type": "markdown", "id": "3dc3d597", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Measuring time of flight with trace acquisition" ] }, { "cell_type": "code", "execution_count": 6, "id": "57a28c22", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:32.467583Z", "iopub.status.busy": "2024-11-13T02:36:32.467392Z", "iopub.status.idle": "2024-11-13T02:36:32.471399Z", "shell.execute_reply": "2024-11-13T02:36:32.470723Z" }, "lines_to_next_cell": 0 }, "outputs": [], "source": [ "def set_readout_attenuation_hardware_config(attenuation_dB: int):\n", " hwcfg = quantum_device.hardware_config()\n", " output_att = hwcfg[\"hardware_options\"][\"output_att\"]\n", " output_att[f\"{qubit.ports.readout()}-{qubit.name}.ro\"] = attenuation_dB\n", " quantum_device.hardware_config(hwcfg)\n", "\n", "\n", "set_readout_attenuation_hardware_config(0)\n", "qubit.measure.pulse_duration(300e-9)\n", "qubit.measure.integration_time(1e-6)\n", "qubit.measure.pulse_amp(0.1)\n", "qubit.measure.acq_delay(4e-9)" ] }, { "cell_type": "code", "execution_count": 7, "id": "33d03939", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:32.473177Z", "iopub.status.busy": "2024-11-13T02:36:32.472986Z", "iopub.status.idle": "2024-11-13T02:36:32.477297Z", "shell.execute_reply": "2024-11-13T02:36:32.476575Z" }, "lines_to_next_cell": 0 }, "outputs": [], "source": [ "tof_t = ManualParameter(name=\"tof_t\", unit=\"ns\", label=\"Trace acquisition sample\")\n", "tof_t.batched = True\n", "tof_t.batch_size = round(qubit.measure.integration_time() * constants.SAMPLING_RATE)\n", "\n", "tof_sched_kwargs = dict(\n", " qubit_name=qubit.name,\n", ")\n", "\n", "# set gettable\n", "gettable = ScheduleGettable(\n", " quantum_device,\n", " schedule_function=tof_trace_schedule,\n", " schedule_kwargs=tof_sched_kwargs,\n", " real_imag=False,\n", " batched=True,\n", ")\n", "\n", "# set measurement control\n", "meas_ctrl.gettables(gettable)" ] }, { "cell_type": "code", "execution_count": 8, "id": "18b84cad", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:32.479038Z", "iopub.status.busy": "2024-11-13T02:36:32.478848Z", "iopub.status.idle": "2024-11-13T02:36:32.634100Z", "shell.execute_reply": "2024-11-13T02:36:32.633442Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t tof_t \n", "Batch size limit: 1000\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7711dd0141eb44d88f67ac0c38146e60", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 24kB\n",
       "Dimensions:  (x0: 1000)\n",
       "Coordinates:\n",
       "  * x0       (x0) int64 8kB 0 1 2 3 4 5 6 7 ... 992 993 994 995 996 997 998 999\n",
       "Data variables:\n",
       "    y0       (x0) float64 8kB 0.001493 -0.0005849 ... 0.002208 0.0007401\n",
       "    y1       (x0) float64 8kB 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n",
       "Attributes:\n",
       "    tuid:                             20241113-023632-482-9d6ba1\n",
       "    name:                             Time of flight measurement q0\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 24kB\n", "Dimensions: (x0: 1000)\n", "Coordinates:\n", " * x0 (x0) int64 8kB 0 1 2 3 4 5 6 7 ... 992 993 994 995 996 997 998 999\n", "Data variables:\n", " y0 (x0) float64 8kB 0.001493 -0.0005849 ... 0.002208 0.0007401\n", " y1 (x0) float64 8kB 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0\n", "Attributes:\n", " tuid: 20241113-023632-482-9d6ba1\n", " name: Time of flight measurement q0\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tof_t_setpoints = np.arange(tof_t.batch_size)\n", "\n", "meas_ctrl.settables(tof_t)\n", "meas_ctrl.setpoints(tof_t_setpoints)\n", "\n", "# replace the get method for the gettable in case the cluster is a dummy\n", "if \"dummy\" in str(cluster._transport):\n", "\n", " def get_fake_tof_data():\n", " \"\"\"Generate mock data for a time of flight measurement.\"\"\"\n", " y = (\n", " np.heaviside(tof_t_setpoints - 200, 0.5)\n", " - np.heaviside(tof_t_setpoints - tof_t_setpoints.size * 0.7, 0.5)\n", " ) * 30e-3\n", " y += np.random.normal(loc=0.0, scale=1e-3, size=y.size)\n", " return [y, np.zeros_like(y)]\n", "\n", " gettable.get = get_fake_tof_data\n", "\n", "tof_ds = dh.to_gridded_dataset(meas_ctrl.run(\"Time of flight measurement \" + qubit.name))\n", "tof_ds" ] }, { "cell_type": "markdown", "id": "ec60ef79", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Analysis" ] }, { "cell_type": "code", "execution_count": 9, "id": "bfbe873d", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:32.636212Z", "iopub.status.busy": "2024-11-13T02:36:32.635902Z", "iopub.status.idle": "2024-11-13T02:36:33.441737Z", "shell.execute_reply": "2024-11-13T02:36:33.441103Z" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1oAAAJICAYAAAB4y5W6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8qUlEQVR4nOzdd3gU1dcH8O/ZbDa9EEJCCGBAekeKNKWIVOlVKaLSBAFRbPB7VYqKioqCiKDSREHpiiIgHUWKhN4hEAIkBEjvu/f9487CZLOzJdmQRM7nefYBdubO3JmdXebMvfdcEkKAMcYYY4wxxpjr6Iq6AowxxhhjjDH2X8OBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMOYGI3InoFSL6h4jiieg7J8u3JKLfiegSEd0hIl/VsiVENMP1tbZbpxeIaPf93i9jjDH2X8aBFmP/UUS0mYiEk690IqqilA8holgiukhE7kV9PMXIWgAfA4gC8DmA+Y4WJKJ+APYAKAtgJYBXAKSqVnkIQIRG2U7K57MsX7W2rQKASoWwXcaYCxBRFSJaRkSRRJSs/F7nENF5IvqDiPoSERV1PRljuemLugKMsULzPoANVt7vBqAJgLetLEsHEK38vQaAEOXvYQCuuLqCJQ0RtQPQFUBfIcRqJ8vqAMyC/Ex6CSFMTu6+KQBPAC2dLHdfEFEfAMeEEGeLui6MuRIRtQeQKIQ4UET77wNgOYAbAH6DfEiTDMAdQDiARgB+BvATEQ0UQoiiqCdjLC8OtBj7jxJC7ACww/J9IioLoLoQYq6dTUQC2AUgDcBVF1evpGoO4DqANfkoGwagIoAR+QiyAGATgF4AfslH2fthFoDvAfxfUVeEMRebAvkbOOR+75iIvCFbzjcCGCyESNdY7xnIYGwZgF/vXw0ZY7ZwoMUYs0oIkQSgdVHXo5iJABCdzyfGEcqf0bZW0iKE2A+gYX7K3iekvBj7rynKa7sbgHIAXtUKsgBACPEDEY0A8BI40GKs2OAxWowx5jgvyO6V+S2LApRnjD14KgG4LoSIcmDdv8BjLRkrVjjQYoxpIqLF1rLgEdGTRHSBiAKI6EsiukZEJiLKVrLpTScivZKhb7qSUCNbGcB9hYjWEdHDNvbrS0QfENG/RJSkStaRSEQHlW16aZW3c0wNlP2fV9VJEFEMEe20NqiciIYSkQAwCEBriwQi39rZny8RJQLYorx1yeJ4fG2Vt9jWOSLqpLGsDBF9RURHiShNtY8bRPSncgxTieh7G9v3JplRcT0RnVEG26cR0TEimk9EIRbr+yrHICATeUyxODf/c/C4ApXEK3WV/Z9RfTZxShKAEGXdwUR0WHWM8US0RxlHo7V9HcnMinuV82GuXwYRnVCu8/I2yvsS0RvKtRenXOuCiG4T0QEimkJEHhplA4hoHhFdprzJZ7KVz/RVy2tOKbudZCuFvfO3hKx/T9sr3zd3IvJR9nNAqfdPrjpHRFRL+fzKEtEMIopSrh0jye/VXOUcEhG9TESniChT2f51ItpCRI/YOD6Dcv7/IaJbqrqlEtERIvqCiEpplH2S5O+Pjoi6EtEG5fiMSh1OEdFyIsoToJD8jROQLfuDLD67hfY+F4tttSWZoChK2bdRuZb+JKJnlfqdp7zf74cguys7IgZAhLVriTFWNLjrIGPMlghY/50IB1AZMrGDF4DFkAO1PSATbfwPQCAAbwA9AfwImaUvC/LGYRiAA0QUoXRRvEu5YT2o7PsHyEHeycpiPwBVAEwC0IOIGgkhsh09GCJ6EnKs03kA6yBvTLIhHzqFQI7B+hkykcgUVdE/IbvkDFOO63PVsn/s7DZVKfsogLEA3gVwS1mWiNxZB+2pAiDPzS4RBQM4qRzHD5BjpdIguzv5AagO4GsASQDOaWzbB8DfAKpBdj36GcBNAAbIz+xpAP2IqKYQIs7i2AIATANwALnHkG2BYwIhz/9cyOtqFWTyFROAqgCeB1CXiGYDWAiZDMB8XZQB0BvAFiJ6XAhhLU39t5Cf3S8AtgKIByAgr9cKAPoB6ENEDYUQ59UFichNKdcC8ppZD/m5CeW4awGYCqCTsn/LbqWfAegLef6jlWMy84K85mYBuA1gkUXZSpDn3p6HALhZeb+8cnwPAVgN2QVtM4DfIb8Havk+R5CfXQjk5xIC+dlcVepUG8BopQ77AbwJeY0ugmzdLQfgGQD7iKiGEOKiesNK0LAJMtj5CfLaTFDq5q1sdwiAvkRUWwhxx6Ju4ZDn8QMAE5VtLQIQB/l9KQ/5+ZwkosZCiBOqsq8qyyco+1yiWrYPDiKiFwB8oxz/CsjASQd57daEvDaeAPAw8n6/vQBkOLirNMjvqxuAHEfrxxgrREIIfvGLXw/QC8AMAFEOrrsDwPdW3h8GeaOzDIDOyvL3IW8o4wCUsbK8prL8ZSvLJgIwAqhvo151lHVedOK4CcAx5Zjcbaw3DUAmgApWln0PYEc+z3t75ZxFOHu+VcsFgOFW3v8c8sY42EbZ+spx7bGy7F1l2wetfV7KOsHKPuZqLI8CMCOf5yZC2f8ZAL5WlndQlucAaGNluReASwDWWVn2iFJ2rI39+0EG3yutLGuhlO9po/yTyjp9Ld7XKed8op3j/wXA5vyeUwe+p1shg1h/jfIFPUdtlPLbARisLB+pLE+FTMRj7dpKBjDbyrJeStmuNupWFjL4/dDGOTgOoLxGeW8AJwD86sz5dfDa9ob8HVwEgDTWCYbs9pfn+w35ECvPd1ZjO+Zj1eenrvziF79c/+Kug4yxgpglrGfQWwYZ2CwRQty0XCiEOAXZ+lHXStk2AP4QQhzR2qkQ4jjkU/kOTtS1FGSA9rmw3Qo2C/Kp8KNObLuotQGwTAgRr7WCcj7/srOdF6x9Xkr5eMgn+m3yWUdHzBNCpFh5fwuAWACHhcymaVm3dMjWDmvXU2vIlrwFWjsVQiRDzodm7Xpyh7zWrE2VYC6/BfJG/jGLRSGQ15K9lPfvQbYCFRYdgPHCovVYpaDnyGy2ECLLyvvm7qq/CSHOWNl2PGTacq3fg1PKcq263YD8zbFVt5eEEFazpwoh0gB8BaBNIXS7qwHZcvWZEMJqEh3l+F90dIMk59RKISLNz4sxVjxwoMUYK4hLGu9ftbPcvE45K+9HALho5X1LF6Exua8GcxesKFsrKTejt1GyBpVHwLF5zmxlPIyzFdwqogBUKsQxIFavF+UGNUZrucLW9RRtJ7gG5PUUSESBFvveKYToIoQwKWOFwomovOULstUiwmKbCcqfgbBBCLFPCOHUmB8nLdR4IGIWgQKcIxWtzy8N8juV798DrSDFom4RNpb/baf8Zcjus8F21nNWhPKnve/nUSe26QHZUhaYj/owxu4jHqPFGCuINI330+0sN69T2sr7AQBMWgPvVYyQT4odFaD8mWxzrXvrBNhdq/jwh2PHZetm25GxbsmQN3iFNQbE3vVib7mnlfcDAKQ7cD2Z/z8Mxr0ACQBARJ0BfAg53sjWA8qd6n8IITKIaD+AV4noAoBryP0ZGCEDXKOduhXUCTvLC3yOFAX9/KwluAkAcMeBugEyCNQLIaxdm/bOsfn7EwA5NtFV/JU/rbXU3iWEEI4+vxBCnFDGZTrynWeMFSEOtBhjxdE45WXPhcKuCPtPaAzH5y/LlXiAiGpBjqHaBmA25Dg1awHrJI3tvQiZiEKrRSWLiH6HHB8V42AdnaXVZVAt3+foPuipvOzJhhyj9J8nhLhd1HVgjNnHgRZjrDj6CXLMhT22uiIxZnYKwOsOrJdkZRzPCMhubV1tda0jooGwkhFSCPEvEdWATAATjtwT37pBdml9EzLz3FMO1LGwFOQcFbadkGMn7blxH1oH77c0WG/ps8YbMrPrf+0cMFZicaDFGCtukiHHi/xaCNsFAEfmrfKDzGJWUqRAji+xpzDn10mFvNErbpIBpBXgeqoMINKB8Uua/58KITIBRCqvPIgoDcDXRGSwSCaRBMeu14L+X17Qc1SYkgFkFnHdCnJtm39HfGG9u6U9VwD0cHDdcMiMsg9Eqx5jJQEnw2CMFTeXIOftsYmIXiQiZ26+opQ/I+xs1x9AEIqmtSwDcqC7sy4BqOjAetayurlKFBz43IrAJQAV7CXwIKKGJCf3tWw9MMLO/5VEpIfM3Gf5flmSEzDbC3CjcW9eJbUo2PlcicgHMj17QRT0HBUmR38PniKiyEKqQ5QjdbBRFnDs+2nNJQBh1iZUtqI5uJWfsWKFAy3GWHGzC0A3IorQWoGIvCHHcGmmM7fiNmT3qPFE5G5jvVchu9/Ym4i4MFwCUJuInP1t3g1gKBFZSy4CItIR0asAGha0gjbsBfCUgzeE99NuyDTrfbVWUAKM8ZBjryzHH50H0ES55qyV1QP4AnIuJ0tVAXwCOYeZLVUhA7pYi/d3Qp7Tahr79oRMyV7QwKeg56gw7YI8/5rTLSiTSk9E/lqMHLEXQGMiapaPsmcgM1K+nM9snb9AJlH5ROsaBO52XW0L4Mt87IMxVki46yBjrLiZCznB6VEiWg6ZdtmcscsD8oa2B2Qq6MGOblTJ6jURcj6eo0T0C4DrkAPodZCZ1JpDTiz8vhDC0cQArrQYwGgAvxLRDgDrrc07ZMU0AAMBnCGiHyBbSDIgM56FA+gCOR7oT1jPzOcKn0N+bkeUzy0KcgJhR+pfaIQQB4hoKYAVRNQPctLqBCgTu0LOr9YWcg6skVa6Xc2DDOr3EdFa3AvuAyFbObpDZqnbiLzd/PZDdv1aS0TrIZO3qLfvBjmuaySAn6xky/tSWXaYiL6HDMTTlDpHQH4PjqKADwVccI4K02rIQHAXEf0IOSdZslI3d8jvbRfI1tpuhVSHFQAmANipfL/OQU4wfdBeQSFEGhG9CeA7ADWJaBtk4OXQOCql/AQAywGcUlrxoyF/E/WQv4ONALQDsApAcez+ydgDiwMtxh48FyBvFBwRhXtzYqnFKMu00oWblOW2sqhFwUqKcCUldiMA/wPQEcAgyDFTgAwerkM+Yf5ECBFpu/p5tv0HETUB8C6APpCJCNyUxdchWy8GQHvy2Cjkf6B5LOQNVoKN+v1DRL0gj/1/kJPdzlCtcgFWPg8hRKySHW8a5A1XZchWjmTIQHUFgI8hW1eqWNl1NBybu+wa5M1+ns9dCJFKRA0BvA3gCcgg2N2i/loSIM+NZYuOWhTksWi5Cu0slM9DXjPPQU6Aa+6iZ25FOg6gpxBivWVBIUQUET0GeRwjca/lKgnyevlceU2GRfcyIUQmEXWCPPeDkXc6AxPkd+QHpbzlvjOIqDHktdABwNOQ34UEyNbZdyAnEf4G1jMGXoUMAhOsLLOU73OkLL8J4I6N7V+C7bmkLsNKtzflAUkHyBarPpCBbSllcRaAGwAOAXhZCLHTsjxsXLMW4pRXnmx+yhxqbSCThfSAzIBYGcBwO9s0l19ERBcBTIG8DirAifGSQojVRHQU8vNupezbF/KzuQJ53Q8A8DOPz2KseCH+TjLG2IOBiBYDqCKEaFXUdWGM5UZEAsAIIcQ3RV0Xxphr8Bgtxhgr4YioFhE5kkRDB079zBhjjN0XHGgxxljJtw0yUYE9D8F29y3GGGOMuQiP0WKMsZJvM4D/UzL+nUXesW/ukJnvHoeNzHKMMcYYcx0OtBhjrOQbB5kYoBeAUOQdaJ8FmRBgHIA197dqjDEHRcF68iHGWAnFyTAYY4wxxhhjzMV4jBZjjDHGGGOMuRgHWowxxhhjjDHmYhxoMcYYY4wxxpiLcaDFGNNERB2I6CIR8W8FY4wpiGgHEY0shO1eIKJOrt4uY6xo8M0TY/9RRBRCRLFKoOSez82UA1AJLvitICIfIppCRMeIKJmIhOp1lYj+JKInbJT3JKLJRLSLiGJUZWOJaC8RzSQif42yOiJ6moj+JqKbFvu+TUT/ENEYInJz8ph0RLSWiJbbWa8GER0hotE21tET0QIi2m1nW72I6AoR1dVY3lE5l9csjtN8np4hIsushPlGUn8i2qzcJOYo+0sion+JaAkRPWyjfDMi+pWIoonIpKpvGhEdJaJPbHyuPkT0lrKe+prKIaLzRPQzEVW3se+qRPQTEZ1T1dv8uqacxzY2yj9KRL8on4e67reJaD8RjSciq9l9iag0Ec0iopNElK4qayKiKOWcPKJ95l2HiCYp+7T6PScibyKaTkSHLc5zFhGdJqLviChMo2yhfPfsHE9zIvqNiC5ZfC7JyjF8rHVNOSECQEUr+3YjopeU47ptcbzpRHSciD60sf/KAMoXsG4FRkStlO9Fl6KuC2MlGad3Z6wIKDc0owEsE0IkF9JuagAIUf4ehiKcqFa5sf8ZQDsAPwL4HkCqeTFkPZ8AsJWInhFC/GhRvhSAfyCDvlUAdgK4CUAACFbeHw9gKBE9LoQ4b1GFSQA+BPA7gC8AJChlASAQQAMAXwKoB/m5OOo1AD0B7NVagYiqAPgTMmi1egOl3GQuBfA0gBgb2+oO4CfI3+5QAMcslveCTN++F8BCALcAmCDPcRCApgCWA6gG4F27R2eH8rn+BDk315/Kvq8ByAbgBzlBclcAA5TPdY1F+RYAdgM4DmAJ5GdqVBZ7AXgYwCgAHYmogRAiR1WWlGPpBGAFgB8ApCiL9ZDnuw+Ao0RUXwhx2mLfVQAcBXBHKR+t1Bu4d012ArCdiLoJIX61KN8EwB4ApyA/O3XdAyCvpdkAHgEwzKKsh3K+KinH8B2ADGWxG4CyAJ4CcEC5njWvr4IiopaQ3w2d8jJZLCcAfwBootR1Be59dw0AKgB4BkA3IqomhLhjsYvC+u5pHc9AyGvhXwArAVzHvc/FF0AVAGMB9CKiukKI9ILu08JXAEYA2ADgV8jry8wT8rs3DkAbImohhDDm3UTRIqJHAfwG+R0uV8TVYaxkE0Lwi1/8us8vyBtQAeCJQtyHP2RA8jsAXT63MUypp76AdWmrbKejjXUI8sboMpSpJ1TLPoW8Yaluo3wFABcArLJ43wvyJvYDO3UcA3lDVtXBY2oCeWN+A8AejXUilOM5CSAewAwr6+gALFK29ReAqxrb6gQgU/lMBYD2VtY5Axn4kI16TwWQBqC0C66x7kpd+tlYxwfAWshAxtti2U7IYMXNRvm6kDf/z1m831zZdxcbZT0gJ3BeaWXZ9wDiAJSyUV4HebN8zsqyPwD8beu7AeA5pY61rbyfDaCujbJ65XrYWdDPycY+AiHnbrqh9T0H0E1Z9riN7QQr38/3LN4vlO+enc87SvkdsXVN1YKc1HtSAfYVZfl9hgyiTAAm2ynbTFlvkJVlAsDwwvrMHTiuR5TPcmdR14Vf/PovvLjrIGNFgyz+dDkhRJIQorUQorMQwmS/RKFqCXlTu1lrBSGEgHyyXxH3WuLMT9RHA/hUCHHGRvloANMA9CGisqpFjSBvwJbaqeN3kDfWdrtrEZEfZMvcasgbbmvrBAHYBvn0vy3utbZY+gTAYAADoHF+iKgZZLCyDsALGuuUhrzR+0E5l1oWQ94A17KxjqNeBLBNCPGz1gpCiFQArwIIhwzMzPV1h9LCJmw81RdCHINszWxqsag5ZOvI7zbKZkJ+To2tLG6i7NuyBUZd3gRgPoAq6mtKaZFuBhnA5WiVB7AM8oba8ppqCeBf5di09p0D2crXVPkOuJSyza8hA473bKzaCMAlIcQurRWEEPGQLTiWn5HLv3t2VIN8iPWJnWvqJGSLTesC7s9SI8jf9C9trSSE2AfZ4tbKxfsvEJJdfLdAtvR2LeLqMPafwIEWY+x+OARgqp0AAJDdfIDcYx9CIQODfQ7s5y/lz0qq965Bdlk6nXf1e4QQGZBPcvOMu7DiS8huUy/iXjcoS34ADgJoK4SItbEtHYA+wqJbnYVSkF0BB0HeGFuTCuADAFttbAe4d44fsrOeIyrBgc9FCHFR2a/6czFCBn3rHdjPdeT9XPYCeNXBa6qilWDlITjWnfaQ8ufdLlRKAPYJZOuhJiVYuom853o3gFkO7Ps6ZHezYAfWddZzkF0rBwGw1X05HICt69fsOmQLrlphfPdsMZ/nSw6sewm5r0dXeAhAkhAi0YF1D0Ke2+IkELIFt6sQQuvBEGPMCTxGi7H7iIjaQbZamAd+b1Hd/xkhu4PtUNatBWA7gJpCiNs2thkI2WXsCSHEcYtliyG7ov3PSjkDgIkAekOOWwjK73HZI4TQbHWwEKH8eVX1nvnm6TrsM49vqgTZrct8kz/BXkEiCoAMaKLtrDcIsgWqnRDijlZjgxDiMoD+9vYrhLBbN+X8/a7sX2udDACT7W0LMgAEtFvYnPEQHPtcAPnZ3L2xVYKVFx0sGwFgv/oNIcQ/kC1d9vgBSLUSkHnAgXMghLhORNUAnLd4f5q9skpw52e5HyHEEntlFRGQ3Tw1W93yg2SCkDmQDz/+IaKaNlaPgmyBs8cP98aZAXD9d88B5oA0wYF1EyADC2v1qQfZxbYO5Gfg6L2SJxz/Xr0J+bDGKiKqDTkGtDXkmD1PALchu0evhWzhz9QoWxdyzGpbyAdVvpAPhKIhu9J+IITYZllOCHEIwLMO1p8x5gAOtBi7vw4DeAnyP793IVtGzE97cwBEqtYNUV5BkP/BaglU1isLmVRALQJWvufKDeAmAI9Djmf4FbkHqZs1g3zibVneDYCfECLBRr2comzzZQAXhRDqm3cv5c+MPIUsCCHSlEDEOx9VmAjZzUuzhYaIKkMOdv/QHBCXQI/BznE6wRMOfC6KNOTjcyGZibIBgM+cLat4DHIcmDV3r3flZt8chOYAiDN3uRVCnMvnvhtCHrPW/jURkQ9kl9l9dronOrtdD8julIchW0DtiQTwDhGVF0JctbaC8nvSCrl/v5xh97vnJHutnJrrKNfbHwDOQba2xuBekhQ1rUBbfU2ZE5uYn44kmFuK7Px2PgFgHmSym3WQY+jSIJOs1FD23ZmIWls+QCCiBgB2QQbn5vqnQbaclwXQHsCfRDRSCLHQRh0YYy7AgRZj95EyHmQ+EUVABlrrhBD2unoVhp6QTzvbCyH+1FqJiFJgJdCCzD7Wn4jqWbai5QcRhQJYoNTpyYJuz8l9GwC8DdkaNF0IEaWxnjtkNrNzAN65bxUsACVbo4/yT0/IG//PAMwSQtwosoo5QLl5Hwh5w7kL8tzbW78c7t3UBkNmQ3wCMtiyxoOIPoH8PlS2WJZFRKchb2rX2OuiqIzbC1D+6Q6gJmT3wJ9wr/uhQ5SMiIshWwD7OVPWAe9DtmDXdzCA2wKZzGUdEb0Nef2bM/URZEbTFyBbf4Y7UxFHv3tOMLcmeQNIsrNunqBfuYY+hbzeOgohrAVY5nUn2VjWHDLT4iO49/0zL4uDfLA1xcZ3sBuAp4QQWmM2FwLYAdn1c5XF4jGQD83qWevCSERTIMfMvUdEy4UQaVrHwRgrOA60GHswtQEQaSvIsiMBsiXDatcVZxBRP8hWIh8AQxwNPIloE2RCgwiRzxT5ytPfJbiXinu6jdWnKus9IoTIys/+7ielReQm7nVTNYuEPJbC2u9bkA8ROua31Y+IykBeE30gu88OsJXcQDESMnGFpbeEEP9qlHkDsrV4LmS3KnPrnB4ygOgCeSM7EnKMnC1nIVsM1K4CeMmBcWQAck378LFSl+5CiBOOlHVw+x0BvAL5PXNkHBOEEFlE9BJkFrqNNlYdLYQ44ERdGsDx756jzGPuwmA/0LI271egUp+etoIsO/whu/athswmGo97rVwBkAk7xkCmd6+tdPm19K1WkAUAQoidRPQv5O+4ZaCVCuB9rXFiQggTEX0G+QCtOmTLJmOskHCgxdiDKQIy7Xi+CCFGo4Bz3pCc4PQLyFaHQwBeEEIccWITpSC7ejn9O0ZEngDegnySHg+ZntzyhkW9flvIMRUvCov5mIorIUQqycl2A5W3/CBbMl4CsIOIHrMc40FE5aF9PjMcbAULhBx74mNnvTxUrVifQ96wvguZMtyRlpcVkIENQXaTCoEcW/Q+EWUKIax1PUwB0MTGTfVXRPStso3v7AR7T+Hezbs35HdsFID9RNTI1jhLQE6eDNmq2wYyoclIrWCIiIIhx91YIwBcsdKlLBQysFkB2SLtEGWerT8hA961uDdPGiCD+DDIVuj3ieigMs7H1vYc/u4p61oGr2rxFkkbzkK2tvWHjcBNeQhhni5BLUL5M9+/jZDfs9FCCM0WWCJaBtlKOBLyN9CSI70EomAlmYcQYqJqP+rusGrm71MEONBirFBxoMXYgykAuRNO3DfKzfQLkN2qdJCTd37lQIuFpdYAPBzM8KXefysA30A+WZ4H2YVHcxvKTe33kN19FjhZxyIlhMgzNoiIvoNM7DACsiXH/H4HaKSqV61TQ9hIsa94CzK9dpwzdSWiipDpxjtB3ti/6MzYKOUztGxx+YaIjgH4kIiWWAl2VjnQcrEMwPOQGeI0sxRaCzCI6EvIcz0ZcuLePIhID+B1yC50CZCTVq/UagVTgoTrsP3/9yiorlWlpWwxgCwAYxxtYVN8CXle+9goN5+IZgP4nohq2ai7U989yLTvT9tY/jeAFuZ/CCESlNaaKcoxb4Ic36SesLgy5OehR95Ay9z1syCJYgTk5OzaKwhxnoj+ghx7qLUNe5Ihx/rmogSnUyAfhNnLVhlgZzljrIA40GKM3TfKOKcvIW/y10N2q8pXwKd0uXE0EYN5/y9A3syfBtBCyPlsbK1PkDeGbpAtbs7coBZLQogYIvoNchzIXNWiXQA6w0aLFiwy72ls3wQ5Z5rDiKgpgF+UfT8LYJkLz/VCyFTsHSGTQKg5k8kyAo6lg79LaVX8AfJc5wm0iMhXqdNTkNfZ68LGvF6qbbaFRsY8yJt0ywB7AuTxt7W3fYv6lQdQHzIgsvd5fKvspz6sJMVw9runmAzbY/MuWnlvGmRgNQWyRdSSETIQ2g1giAN1cNZNB7sdxiBvOnxX+D/Ieeu+gJyry1rQ6AaZZIMxVsg40GKM3RdK0LIKciLMlwF84eDNtHmwtpfNteQ+zAPc8wzwJqJXIG+4lwEYJYRIt1zHilEAekAGhh7KjaclH9WyeI0xF4VOeYIvHDyn0QA6qN9Q6r3Jyd2mw4HPReEN65/LY5AtaacA9BJCOBTMEJGbI62gQohkIkoEUMHKYkduiM3r3E3FrVzLOgdbYaOt7VtpedgOOXH0ACGEzTm51Ky1VGohovoAZkKOF7qgcQ2bp3YoT0R3VK1M5nmeHHkYYk7NXhkWgVY+v3tQkmNEObKuqkwmgLeJ6AMAD0POzWWeM/QWgCNKdtJ3ndmuExwd25UNG+ndC2AMZIvyFK0VlFZUxth9wF82xopGqvKnrXTX5sHcWmMxzPLzPU50YLvAvQxurvAMgO4AnhFCWLYs2GK+8S4Lme7YFvONYa6xLUT0MGS2tQWQ4yccbS0Zr/zpSBrkaMiAoZOD23a1JZBjXibaWxHyibZDN7t2XIHtMTRq4ZBjfO5SWji/hsxk18rRG3Alw18MEbWxkehCzdrxJkHOpWWPp/KnOoCeBpllr1c+9w3IVodHALQRQux2YDv5NQryhv555WXLJQBpROSvBJHmY7ZMqGKNeR2T+s0CfPecpmTZfEwIsUG5lo5De7yTHnlbxM0BZn5/GxPh2DUF2J4awZHfXT/cq68sJI8/EIC9pCR878fYfcJfNsaKRjzk031rT9nNopQ/K8L2/DSt8rH/KMgxTvbUy8e281BaWz4C8JOTQRYgu6GlQ47F2GJn3ebKn5ZJBKZDdhOb6OSN3kDI82/LRMiEAK9DDsYvKsmQ86I5ohKcbCnQcAmqMTJaiKgS5Dmy/Fyeg5wXqK6jQZbCPC9QS8juUbb2bU4cEWWx6DLuBea2mL+j6ronA3iciMiB6ynPuVZuiCdDptkvzCALAN4D8JudddpDdvvrCTl/mLmlzpwU4iHYOc+4l5jBVd+9/HgMwHoiKiOEiLezbhjyXhPmf0fAxm8uEQUBsNYyeBlAMBF5OtCyXQEyIYY1te2UBeRnYtn90hzk6mDbEw5snzHmAva+jIyxQqDccOwFMILkBKLW3IF8GjtOq6sHEdVC/tIi7wRQn4jaaa1ARE9CY14cItITUWkn9ldOeTkbZJnH/HwF4GUiqqm1ntIl6m3IOY8ss+M1BbDe2TljhBBHhRC/2npBtmTdVv5dlIHWbgANichmsEVEdSBb3ba7YJ/zINNUD7SxP2/IbmPXAGywWNwUwFHhZApzJRDYC2Ck0gVPa98EOTYqDcB+i8U7AQxRWse0yusgu2JdRe7xXLshu9s9Y6ueRFQWwGDkPde1IVuznf4+OEsIEePANRyprL5RCPG3qmwCZFa6CUrro1XKeZoIIBZ5Hzbk67uXT+bP2N7n4g85Ls6y5ScBstV8vI3fXG/I8XTW7p/2QybYGGVn/40gHwpZXpNmL5CcOFmr/OMAGkFew3cpXT5vwsZDNJJzOOZ38m/GmJO4RYuxovMGgH8AnCKiNZBPU5ebB6sLIYQytmETgCNE9CtkBi2CTF39CIB2kNn73nBy32shJ7z8g4hWQA5QT4K8+QuFfDLcCDJBQXcr5b8HMICI6grHJiyurvxZT2OMiFoOZNY19aD99yATChwlolWQXc1uKsuCcG9i1yTINOx3KYFsJQClSc4HZM8WBzLrFUc/QWYa20JEKyHHPKnnF/OFTO8+CMAZuCaD4q+Q4+5+JKLhkK0e1yA/Q1/Ip/bdIK/XQVZutqsDyHDwczkphNim+verAA4COENEP0EGQub5zXQAykC2eLUF8D8hRKzF9qZD3pCfUc5XDHJ3lQuFDEgbAuivBPwAACHE30T0PYBlRNQbMhhJxL1scd6QLaGDIG+8P7By3CYArZVMfLZkAPi+qMb+QZ7nLZDfvV9w7/MF7p2n9pBz2g1Tt0ze7++eEOIGEc0F8KlyXiMhvwPmz8Ud8oHP00rdP7Yob/7N/QP3jvcG5GdVGnL8WTfI71aeqQ6EEFeJ6CMAs5VA6V/IcWHm/ZunWBgEGdAt0jiUPwBsIqJIyCQ1cZDdzQMgr52nIYN9a2nxZwGYSTKd/2GlnDvk96EOZMKbWbD4nWSMFRIhBL/4xa8iekH+p/kT5FPgVMisYJbrNIDMEHUecgB1NuTNzk+QN5KBkE+S61gpuxjADI19GyD/sz0AOWmrgLypi4aca6cpZMKEi5AD/9Vl50O2ElR18DjbQ96cCQdeOQDaWdmGJ4D/QWZUu6Za/yZkF5qPAARYKeePezfBjrz+z8nPcBpkgGxvve0ARthZ53kAO+2sY+vz9lHO0RErx5wEeeP1AQAfF17D5rmvtijXivlzTlbqsQxAFRvnxNHP5U8r5Wsq1+oFyCBLvX4M5MOEHjbqHgo5/u4EZPdUc1kj5IOP3yHHjlkr6w7Z2nUQ926mza9UyBvpeQCCrZR9zonjzgBQzVWfl8axdFCOV6exvC7u/Qapv8cmyO5ymwE8fr+/exp1NQAYCxnk3LHYfhbkb+1iAOVsbKO+crwXVMd7B/K38k3IBDA7YOX7DPl96A8ZCF232H8iZPA3A4Cvxr4vQAb49QAsVc5vhlL+tnK9TYac2sJaeTfl+I9CZhw0X883IFuUO0M+iLgE4Ek75/I8gE6Fee3xi1//9RcJYX7QwhhjjDHGGGPMFXiMFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajDHGGGOMMeZiHGgxxhhjjDHGmItxoMUYY4wxxhhjLsaBFmOMMcYYY4y5GAdajOUDEQ0iIpGP1+SirjsrWkTUiYjSiWiZC7cZQkSxRHSRiNzzUb4eESUS0W5X1Ykxxhh70OmLugKMlVDbALwEgCzeLwPgbQBfADhnpdzmQq4XK/6aAvAE0NKF26wBIET5exiAK+qFRDQMwB9CiOsa5RsA8HdxnRhjjLEHGgkhiroOjP1nEFEVyACrrRBiRxFXhxVDRNQUwNcAfhFCvO2ibfoD+AVAGoCuQgiTxXIBYLgQ4luN8pUArABwXAjxgivqxBhjjD3ouEWLMcbuIyHEfgANXbzNJACt7axm2fqqLn8JwKOurBNjjDH2oOMxWowxxhhjjDHmYhxoMVZEiKg9EV0hInci8iGiV4noABHdJqKfLNb1JaI3iOggEcURkUlJrnFbKTOFiDxs7MuPiGYS0b9K0gNzco40IjpPRJ8RUbBG2TJE9BURHVXWN5eNJ6K/iWgiETndOk7SICLaSkRXiShbVafjRLSAiEJtlNcR0XAi+ouIbqjqlU1E0US0kojqaZT1IKK3lHN3SymXTkSXiGgJEdUloieV5BI6i7LPE9EuB47Panll2Tki6mTl/TAiWk5EMVYSqWQq52WIxv4WE9EM1b+rEVGG0m0QABZabG+IRfltRDRCY9v+RPQRER0moiTVNpKU9z5Sui9aK/s8Ee1SPu/ByudtvobTiOgYEc0nohBr5RljjLGSirsOMlZ0ygOoAOAhAKsBlINMlvE7gE3mlYjIDXL8TQsA6wCsB5AIQAAIAFALwFQAnYjocWEx8FIJwA4q+/sBwM8AkpXFpQDUBDAMQAsiaqYurwRfJwG4K2W/hxwHRAAClbKzADxJRF0t923Hu5CJQ3YA+A7AHQDZALwARAB4BkBfIqophIi1Uv47AM8CWAt53m4p58QLQHUAbQDsIKL6Qoho1TGRsn4LACsBbACQAMAbMpHE4wD+BbAKQCXIB1LqMU8VAVR24PjCNcoDQBXIz+MupV7LIT/PhQDilOMx8wfQFsBSIooRQmyz2GYEcv+mX4FM2OIJYA6AHwH8pSwTkAld1CpDXou5EJEn5PVTAfIa+An3rh8/5VheAtCbiOoKIdItNlFRWWcZgN6Q1/ICADcBGJR9Pg35WdcSQsRZ1oExxhgriTjQYqzozQewG8BkZayNpUchg4ZeQoh11jZARIsgg4c+kAGC2ljIG/46QoizGuUfB7ATwCMADqkW/R/kzXBNIcQ1jbJLIYPDTsqfdinB3ysAPhdCvKyxzjQAp5U6vGSxrBFkkDVMCLFEo7w/ZLDRH8AnqkV9IIMpzYQlRNQBwBpHjsWFykEGUr2FEGutrUBEHwA4AmAg8gZKuQghMgB8o5SbA2CbEOKbfNTLfP3UF0Kc1KjXxwCOQn5OH1tZJQwysCwnhEiwUv5dAKcgA++XLJczxhhjJRF3HWSs6OkAjNcIsgDZmvQ7ZMuLVUKILQCOA3jMyuLWAH7VCrIUuwG8AcAymGoDYLlWkKX4A8AJAB1srGPJG7Kl7BOtFZRWrO9h/Zgeh2zB0pyLSjmfI3GvFUdd9rCtrJBCiM2QrUr3UwXlT83PSWkxfAuqFs/7oDWA37SCLAAQQpwG8CtsJ+R4zlqQpZSPB7AE8npjjDHG/hO4RYuxorfQMh23mhBiJ2RrE4jIADlXl7UMcnGQ3ccsVYL91g8B4CMriyJgI5gxlyWiixr71ipzB0qWO2UMUwis/x4lamy3EoCrts6bsp+frLwdAYt5pjQcdWAdV7qt/BloayUhxMbCr0ouD0F277TnEmSrpjU3lMyGtlwGUImIyMkuqIwxxlixxIEWY0XvhL0ViKgzgA8B1IbtluidVt7zB5CSv6rBH4COiMrbWS8TsnuYw4ioBoDZkK0Ymok8bNSrIMd01YH17vfNfhSAGABvE9GbAOIt6pANIK4IgpAA3BuTZUuysq41RgfLewNwA5DjWNUYY4yx4osDLcaKnlaXQQAAEdWCTCCwDTIwiUfe5AoAMMnlNZM+VF72/OnoBpUEC79BBg+vAYiG9ZvrjnhAxuwIIbKI6HnI7pL/aqyWTkQrAbwshEi8f7VjjDHGmLM40GKs+BsB2QLTVQiRrbUSEQ2ERSY7F5kLOQ7LHrstcyodIbv/VRNCnNNaiYjKOrHNEk8IsZmIKkFmc7Q8dncA1QBMBpCKByQAZYwxxkoqDrQYK/4qA4i0FWQptL7PSQB887nvFABnhBC/5rO8lsoAEm0FWYrCOKbEApR1Zt/5+n0VQqRCplO3ioj8IDMuOhNopUF2y8uPZDh2vH6Q55Yxxhhj4KyDjJUERtj5rpKcMFgr49slWJkfyaI8EdErVlqQLuFeNjxb5d8nonn21lOxe0yKJzTevwSgorXJgC3q1ZeImlq8HQU5t1N+RQEI0JqgV6WVMxtVJhh+wYFVowGUVebdclQUHPgcbZSNcGC9SpCfC2OMMcbAgRZjJcF5AE2IyGqLhBJkfYG8Xc3MdgDoSkTVbezjMchU6+EW7+8CMISItJIcgIjKQHZvdGai2fMA/IioocY2iYiGAuilUX4X5GTLz9qolz/kPFKW6eF3AmhIRG2cqK/aP5DJPyba2HdfyEl4nfEogK+VSaJtqQqZcdGZpBh7AQwmokAn6wTI1P9dlOQlVinX1lOQnwtjjDHGwF0HGSsJ5gEYB2AfEa2FTIYByDTgFQB0B3ATwEZY7+I1D8AoAP8S0XIAF3EvY18pADUAdIbsrmaZhGEa5OS4Z4noR8ixYhnKMi/IMWF9IBNZfOfEMW2GnPfrDyJaApltLweAD2TA+CRkq9MCAC9aFhZCHFImaf6OiLoBiARwBzJLnxfkWKY2yr9/tii+FjL43KIc0xnI7oCWgUszaxUXQsQQ0YcA3iWilgD2QX4mXkrd2wJ4GHIerrGOnAzFZsjPZQcR/QbZcqWukx4yyHoBwKdObBcA3oWcuPmMcsxXAKwUQsQ4UHYO5Hxk5uvnAu5dP76QxzpIqe8cJ+vFGGOM/WdxoMWYa92CnPT3ugPrXoUMkBJsrSSEiCKixwDMgLzhNbdcJUG2DH2uvCbDSvcwIUQmETUG8D/IJBQDIcfTADJoug45V9Z0y1YSIUQcEdUGMBVAe8ixVV7K4lSl7AYAnwghHJmbyrzdHCLqAOB9AH2VersBSIc8L39AZjqso9TZmuGQkxE/DxnQhCjvGwHEQrbivGdZL2Xer44AXoEMEp+CDDid8S7kPFvjIQOfcpDnMkape3fIALYLrGeIvACLFPNCiFgljf/7kJ+zZStiDmSA9AnktWApynKbqm1fUz7H6ZATSz8EGRwuVa12CXIuK8uy6UTUCMD/QV4DA3Dv+kmGDNznQV4/6VZ2H62sY881pQ4250ZjjDHGSgrieSEZYywvIhoGYBEAdyEEz+vEGGOMMafwGC3GGGOMMcYYczEOtBhjjDHGGGPMxTjQYowxxhhjjDEX40CLMcasuw6ZYIKTMzDGGGPMaZwMgzHGGGOMMcZcjFu0GGOMMcYYY8zFeB6tEoCICHKenuSirgtjjLEHlh+Aa5bz7THGGLOOA62SoRw0JiJlhccbckZeAPABkFaEdWGMsWKiPOTE3IwxxuzgQKtkSAaA6Oho+Pv753sjQgikpKTA19cXspGM2SJSUoDwcADA9WvXAB+fIq5R8cbXl3P4fDmHz5dzXH2+kpKSUKFCBYB7VjDGmMM40CpB/P39Cxxo6XQ6vlFxkNDdG8Lo7+/PgZYdfH05h8+Xc/h8OYfPF2OMFT1OhsEYY4wxxhhjLsYtWoxpcXdH1vjxcHd3B7m7F3VtGGOMMcZYCcKBFmNaDAZkzpgBd19fgLveMMYYY4wxJ3DXQcYYY4wxxhhzMQ60GNNiMoEuXwaiogCTqahrwxhjjDHGShDuOsiYlvR0+NatK/+eksJZBxljjDHGmMO4RYsxxhhjjDHGXIxbtBhjjDFW6IjIH0BNLy+v2n5+fsEGg8GXiNyKul6MMeYsk8mUnZmZmXznzp0Yo9F4AsBZIUSm5XocaDHGGGOs0BBRmK+vb7fq1as3rFChQulGjRohLCws09vbO0ev14uirh9jjDkrMzNTl5aWpr948WLzI0eO9IiJibluMBj+yc7O/kUIkWZejwMtxhhjjBUKIgorV67c2G7dutXq1KlTbJs2bc4GBgbmFHW9GGPMVa5cueK5ffv2Mhs2bBiwZcuWECL61hxscaDFGGOMMZcjorLlypUb27Nnz5rvvffeSQ6wGGP/RRUrVsx49tlno5s2bXobQNstW7aAiL4RQqRzMgzGGGOMuZyHh0f7zp07137vvfdOcZDFGPuvq1mzZuqMGTMuNG/e/DEAjwCcdZAxbXo9soYPh3jxRUDPjb+MMeYoIvIsX75847Zt28ZzkMUYe1DUrFkztWnTpvD3928IcNdBxrR5eCDz00/h7usLEBV1bdh9kmEyQk866PkzZ6wgapQrVy6sTZs2F4u6Iowxdj81a9YsfvXq1XWJqBS3aDHGmCLVaESv45EYceZ4UVeFsRKNiKrWr19fHx4enifdMWOM/Ze1bt36Vnh4eBCAqhxoMaZFCFB8PHDzJiCKNgNxlsmEdKOxSOvwIDidlgIAuJGVVcQ1Yaxk8/HxCQwNDeUug4yxB46vr68xKCgIAHy56yBjWtLS4Fu5svx7Sgrg41Mk1fgx9jqWxl4DAKyu3QDebjy/J2OsePPw8PD18vLiQIsx9kDy8/MDAE9u0WKsmDMHWQBwPj3NxpqMASYhkGEyFXU12ANOp9Pp3NzceDJixtgDyU0+FNdxixZjJQinZ2CWhNKtlZTkHe9EncfB5CQsr1kPQe7uRVk1xpxy+/Zt/fDhwx/ftWtX7czMTA/1Mp1OZypTpsydSZMmbR89enRUEVWRMcacwoEWYyUIJ8IrHOlGIww6HUpaKCuEwGsXzkJPhA8qVwUR4WByEgBgR8Jt9C4TWsQ1ZMxxw4YNa3Pr1i3ff//9d2HFihUz1MtMJhN++OGH8uPHj+9bp06dJa1atbpTVPVkjDFHcddBxopYfHYWEnKyHVy7ZAUC1ogiTixiKTEnB71PRGLCuVO53ndlPRNzcpDjgu3lCIGL6Wl36xafnY0TaSk4kpqMNIvugukmTp7CSpY9e/bUXr58+SbLIAsAdDodBg8efLVt27ZHli5dWq0o6scYY87iQIuxIpRuNGLIqWN4+uRRh27si0OY5WgAkmY04utr0TiVmnL3vfNpaRh48gh+u3WzsKrnkCyTCalKFsdDyYkAgAsZ6bnWcdUop2uZmRh48gheOX+6wNv6NDoKY8+dwpr4OACACfc+C8trI83I47RYyZKenu4ZERGRJ8hSa968+VUiKl5PaxhjTAMHWow5YHVcbKFsNy77XhpxR26L71egdSwlGT/F3YDJIqi6kpGOIaeOYYNyo2/L8thrWBcfh1cunLn73qzoS0gyGjEn5orL6+yMZ04eRd8TkbiRlYl/khKtruOqO7mdCbcBAOdckMhku7Ktn+JuAMhdR8v6mlu0DiUn4VhKcoH3zVhh8/b2zjhz5oy3rXUmTZp07uuvv95v/neDBg0GbNu2rbTW+nPnzq3coUOHzur3pk+fXrNv375tn3322ZblypV70d/f/9WAgIBXatasOWTBggURUVFRnm3atOkWFhb2op+f3yQ/P79JlStXfn7lypXlLLdfsWLFEb/99luZWrVqDS5VqtTLfn5+k8qWLTumc+fOHRMSEvTTp0+vWaNGjaGBgYETfX19JwUFBb3co0ePJ9LS0nLdf5lMJowbN65RhQoVRvr7+7/q6+s7yc/Pb1JQUNCEZs2a9d63b1+A5b4bNGgwYN++fQHr1q0Lbdq0aZ/AwMCJNWrUGGpeXrZs2TG2zmW1atWePX78uK+tdRhjBcNjtBjTotcj85mnsSslGUtuxaJt+QouSy6QIwT+vHMLpfT3tmcUAm52BmHdr0Dr9YtnAQAh7ga0KRV09/3516JxKycbX12LRvfgEJvbuJJ578F0XFYWQgwGl7USFYQQAqlKEPLcae2JiU1C5HtQXLbJhL2JCdiWcAtUCJ+au1IvdRwsLEKtdJMJiTk5+N+lcwCAX+s+gsScHAgIlHY3uLxOjBVUmzZtjj7zzDNdFyxY8EfDhg2TdDr7z4JTU1O9EhMTNX+Yk5KSDKmpqbkSayQmJnps2rSp0eDBg3edPn16gb+/v9FkMmHp0qUVxo8f3798+fKxAwcO/HfTpk0bPT09TTk5OfThhx9WHzNmTL9u3brN8fb2vvtTlpKS4vPGG288+cUXX/zerl27WzqdDnFxce5PPfVU98cff7wfACxfvnxdo0aNkgDg4sWLXp06deo/ZcqU+p999tlh83befvvtOqtWrWq6YMGC1V27do0zH3tCQoL+tddea9SjR4/Bly5d+kq979TUVK8VK1Y8/Ntvv9V9+eWXd/Xt23dDSEhItuo4/e2du+TkZL4PZKwQcYsWY1o8PJA07yt8Ov1dZBsMSLMY85JhMmF/UiKy8pFKe+3NWMy+ehnvRJ2/+56xmI1dAnIHSwDyPc7o2dPHAOT+wYnJtNlDyOVSjUYk5+Q4HOxZrhefnYU/bsc79Hl/eOUSPoy+hAPJSdifbL3FrCD05kBL9Z7J4qPJMBlzjf3LFgKDTh3F4FPHkGUyIUcIzLpyCVvv3HJ5/RjLj0WLFu2qVavW9e7duz8TGBj4qrk1yc/Pb1JwcPD4hg0bDti4caPtJzwOCgsLi58/f/5+f39/IyDHgA0bNiy6Ro0aUaVKlUp5++23T3p6epoAQK/XiylTppz28/NL2bx5cxnLbY0bN+6v9u3b3zIHRyEhIdnvv//+jmPHjlX7+uuvfzcHWQBQuXLl9LFjx+7Zvn17rnFmBw4cKD9mzJgd3bp1i1MHmIGBgTkLFy78JyAgIGXx4sUPWe57/fr1Dffs2fPDmDFjLqmDrPxYsGBBRHBw8PiYmBgP+2szxhzBTzIYs0E9BsYyEJodHYWdiXfQKSgYE8rn+f/Ppn9TkvK8Z3Sgsxrlo4XlWmYmpl8+j17BoegQFOxUWXPXwdvZ2TiQnIjsAgaD6urPio7CZ1VqFGh7jjIJgb4nIgEAP9Wqr7me+jO27DY57twpJOTk4FpmJp4LC7e5v71JCfmu686E26jg4YnKXto9qNx15hOpqq/F9ZNpMuUKvlKMOaq/G/FPUgL+TLiNPxNuo30pzZ5XjN03/v7+xmXLlu0BsMdyWXx8vPs333xTeciQIc/s2rXrmzp16qRY2YTDKlSoEG/t/bCwsAR/f/9Ma8tCQkISLl686AcgV1/yFi1a5NlW06ZNE/R6fc6jjz6aYLmsdu3aCXfu3PFTv7d69eot3t7emhlsKleuHHvmzJlSAC6p33/iiSdOFDTAMhs5cmTUyJEjv3DFthhjEgdajGkRAsaUVHikpSPTyzNPa87ORJldeNPteKcDLWvxitGBGOb/Lp3D0hp14SUnwnPI0hsxiMrIwGdXL1sNtH6Ku4FFN2LQvXQZvBheMXedILDtzi18HB3l8P4A2T3PnGY8t3uRluOZFgvuTFrq3b/fVI2Ls5Qt7rVWWX4cCTkyUNmfnGA30MqvIynJmHlF3kf9Xq+R5np6kk+81YGUZYuWSdh+UJCoCrwYK+6Cg4Oz33zzzTORkZGh77//fsMffvhhd0G2ZzAYrH4BPDw8jB4eHlaXubu7GzMyMvLcN/n7++dZ39/f36jX643Wuj/6+PgYc3Jycm0nLS1N179///YHDx6smp6e7mlZJisry1C+fPltlu/XqVPHasDIGCseuOsgY1rS0lCufHmsa/4YPNIz7HYZS87JwRdXL+N4qv0HrZatD4BjXQdTjEb86mTGPntbXXQjBgCw4dZN3M7OHfzkCOF0kAVoJ35Qt8fdz66S6oQc312P0Vwvx0aLlllURkahpag/rzpvQgj8GHsdexPzThdkHqOlbgW1HKNlhMh1DMWxaypjZleuXPFcuHCh3SdW9evXj71y5UqQvfVKmueff75NRkaG/vDhwwuTk5NnWb569+6dp5UPALy9vfmJCWPFGAdajDkoU2nt2BAfh/9dPJdn+aqbsfj9djxeU93Ua7F2y2vtRtjaOKYMJ8eEBervPTi1FyBkWmw7vzfnWl0M1YGWZQuMluOpKXj21DHss9Md71pmBhZfj0Fiju37jkNWum2a5Qq0bGzjhKqFzJXUgdHR1BQsjb2GGZcv5lnvXHoajEJYdHXMuy31MWSJ3EGZ+iPKNJlwODkJ2fkYb8iYKxw8eDBw1qxZre2tR0QQQtz9KfHw8MhOSUnR7J2TlZVVIu5zjhw5Uum9997bGx4ebrXboslkyk9WHWGy8Z3OyMjgrDiMFbIS8QPEWHGQpdzJfnUt2urNeqKqK5y9gMZaa4m1Vq7hZ07kec+cCOFqZgYuW8z9ZI2/KtCKyshAso1AxLIGli1cjnLkh8UIgXSjERPOncIPsdc115sadR5x2VmYGnVBc500oxEvnDmBlTdv4FOLFjhbx2sp22S/RQsA7uTzvNijbqGKt9HFEQC23bmVu+ugxadnQu7AUd0ia9lN9bPoKEy+dA7f3tBu7WOsMD3yyCMJsbGxpTMyMmz+fJw4caJMhQoVbpv/XbZs2TtHjhzRHHy6devWqq6sZ2ExmUw6Nzc3qz86JpMJkZGRzvVPB+Dn55d69OhRP2vL/v7778Dbt2+XcnabjDHncKDFmIMsW3sshRruJWpKUibDvZmVhQxT3vHN9lq0DiYn4pxGq4kbEYxCYMSZExh99iQSc3IQlZGuGdypb8bHnDuJ/ieP3L2Jz9s6lnsb9pI6XMvMxPm03N0Et925laurnlliTg5is1TzhgmB32/H42x6GpbFXtPch7qVZfjp45h/LTrPOuryB1VZ/i6lp6P/ySM2j0Ety8YYLTWd6tnyzawsRGcUPIOiSQjNMVdGIfDOpfO51k/MybHoOpg7OBQWLV7qVsY0kzHXMvN4w/UOzI/GWGGIiIjIqFGjxuXevXs/ef369TwtLTk5ObRgwYKIjRs3Nnrttdcize+PHj368OLFix/78ccfw82tNyaTCfv27Qt46qmnnrxy5YpLshQWtlq1al2ZOnXqo+r5tUwmE7Zu3Vq6bdu23VJSUryc3WbHjh0jn3/++c4nTpzwMb+XkJCg/+STT6r269dvgKenp9XWM8aY63AyDMYclClsB1rqFoUcYcL1zEw8f+Y4gvTuWF6rnsW6eZlbGeKzs/B/FjfVam5EdyejBYBx507iZnY23nnoYTQLCMy1blJODi5ZafUacuoYRpergHPpuYM5ZzsKvnBGzkO1vGY9lFJazmZdvWx13YEWAU+S0Wi3mx8gEz9kCnm8MVmZiImPw+hyFXKtoz5G9bn99ZZzgYO61Wd9fBz6h5SFj5XEI2nGe+sNVVLXN/T1wxsVK+Ow1SQg0tGUZHx3IwZjy1VAFVVWwcPJSZhx+UKuedXU19Ox1GSraeLVwdLptFTkeOXu+qhO7qE+thfPntSsI2NFZe3atb+OGDGidb169UZlZGTkSjHu5uZmLFu2bPyXX365Sp0uvW/fvtdjYmJ+mzJlSsfRo0cHmkwmnZeXV0bZsmVvtW/f/nTHjh0v/PLLL9XV2/L398/y8fGxGmT4+Phk+vn5aS7z9/fPsngvzdPT02q2QH9/f6szhfv5+eX4+Pjk+mH+9ttvtw0aNKhjuXLlJhiNRjciEr6+vmlhYWHxgwYNOnzq1Kk4X19fy31nBAQEaDZ9f/3113+NGTOmWbt27YaZE2x4e3unV6hQIe6TTz755ZVXXumuXn/BggURkydP7n7kyJGvtbowMsacw4EWYw76JDoq13gnS5kWXbPMN8a3rWTXs9Ytzdw6cTPLdpcxPVGufd1UurH9dvsmmgUE4nx6Gr6/cQ3DwsJt3lBbaxlyZkhWbFZmrr+XsnFutPx088bdv2eaTPDQ6bDpVjyWx13DtIgqqOTlLVOZ2xk65KqmefU4pp9u3kB8dhZeq1gpz3qfXo1CFS8vRHjee8h8OCU5TzBp6Q1lIuiply/gqaAyWBcfi7aBpfHr7ZvIEQJpqnN6UpVUJd1o/QSoA60Pr1zKsyxbo0VLixuUljDc66LK2P0SFhaW9euvv24BsMWZchMmTLgwYcIEzb7F48aNyzXQ8e233z4JwOqP46JFi/7W2s7mzZt/t3wvOjp6gdb6sbGxX1p7v06dOilnz55don6vYsWKGbt3716vtS0AeZ6+RUZGrrCxPry9vU2LFy/+C8Bf1pa/8soruf7N6d0Zcz3uOsiYE2y1NOUOtIRmV8NPo6OsZuUz3zQn2Um77UZkNSGGeTzOpPOn8U9yIv53KW/CDnscmcvLbNjp43f/7q7T4VpmBtYk5H/y20Enj8IkBD6PuYz47Gx8pIy1crdzw59izMHhFKsPjp2WZsz9YPpvG10n18bHQXPSGztuZWdjSew1JBqNWHcrzupE0JtVEwn/cTtvBuc9iXew6mZsnvfNTMg95izbTossIK+t6ZcvYMipo0g15vfoGGPFQURExHBby41Go87Hx4ezFjJWiLhFizEtbm64060bjmekweRm/5mEujXki5jL8NWY62rLHevBiLlrV5K97nRCWA20zC0Wmcqft/KRsMFeCnstG+LjNI/LUakmIzbfvreNKKU7oDvZPverbQQbzlodn3tb9sLOHAeCF1f4x0q3wTMaKfTNTELkCuAu2FkfAHRE+DtJ7uvvpASeyJixEiwrK8t99uzZVUaPHn3R09Mz14/V1q1bS2dkZHjUqlWrcFKoMsYAlKBAi4gCAUwG0BlAMO5lir4NYCeAd4UQNu+4iKgRgHcA1AFgHiBhBBADYAGARUIIo2p9AjAWwIsAglT7NAG4CmCmEGKNxT4IQB8ALwOoCMA8qDcTwFkA7wkhdjh84KzoeHri/Lff4P3rebvYWco0mXK1YEXmo4XlrYtnsa7uI3Ynks2BQLq1QMsFqbnHnz+NSRUinC5X0CDLbGls3qx31lq0hp8+jikPPYxKXl7YnZB3nilXsZV5EMjdYlTcmCByBYI/xt2wsbbkpkrA7+w0Aoyx4uWjjz765c033+w6efLkPm5ubup7G+Ht7Z0+derUDXq9vvj+iDH2H1AiAi0icgPwJ4ANANoAuC2UFGtEFABgGIC9RFRPCGH1sa0SZP0M4CUAfwohMpX3dQCqAvgQQA0Ak1TF+gF4BkBnIcQV1bYIQC0APxPRdSGEuk/3BAA9IQO04+bAjYgMAJoD+JKI3hJC/JLvE8LuG2tduqxZeuOa3dagoynJ+Ccpb8uEmbklKsVOl60ck0CmlUyGjozBccSsfExQ7Cp3LFrzPrxyEZetzCUWk5WJMedOoomfP2Ky8o7Z7nnsX5Q1eFgt64wsIbA38Q5aBljPguyqc14YhHC+fupsihncdZCxEm3w4MFXBw8e/HVR14OxB1lJGaPVC0CUEGKqEOKWUOWxFkIkCiE+B/AbgFE2tjEVwAQhxG/mIEspbxJCnAEwCEA/IgpVlekI4FN1kKWUEUKIEwA+AdDX/D4R6QG8DmCgEOKIunVMCJElhNgJYCiA6U6fAVYkrM1tZc22hFt2sxK+cfEs1sTb7+Zmr2UqB7a7Dv6X7LDTWnVAI8NfphAFDrLMrE0YbOZoIF4UjBBY7OS8WKRq0UrjFi3GGGOsQEpKoFUXwHY762xV1svXNoQQqQAOAVCngf0ewDYb24wBoA7MKgC4JoTQ7KMjhPgXQJgSlLHiLDUVLUPD8Hv9xvBIsz0xsJfODQdtpPV21Iq464iyMydTlsmEI1a6JjqS7IDlz78an21xPudGIZDsdKvUvcDR2vxvjDHGGHNcSQm0ygO4bmeda5BjorQECCFSbCzPsw0hxHYhxG0b65cH8K+T9QSAmwDKOrAeKyGuW+m+pnYq1d6lJy25cQ3/ptgO2H6Mu4Ffbt3M835WMR4vVNLNvGK9Vas4t2jdzEcylCRVYMZjtBgrOrNmzapaqVKlF/z9/V8dN25co/yuHxoaOrYw69mgQYOB27Zt46w5jGkoKa0qboDdTMo5KPjxOLQNZVxXHQAjADytWuRIPR3eD/vveOXCmULfR4bJWKxv/Iu7Zv4B2Kcxhk6rZei/2F3TzFrCFcZcrVevXu22bt36iPq97OxsvclkcvPw8Mj1BOvhhx++GhkZuSIqKsqzevXqE5966ql9q1evttfbpcRZsWJFuQ8//LDTvHnzVvXp0+e6Tmf7mbit9ZOSkvws1//tt9/K9OjRY9TYsWN/mz179r+Wy52RmprqmZiY6G5/Tdc6fPiw35gxY9qfOnUqwmg03k3x6+bmZqxYseKNjz76aGunTp1yPZG8cuWK59ixYx87ePBgldTUVG8hBAFyEufatWtHzZkzZ0ft2rXtZmE0mUzo3Llzp7CwsCRlnjLGNPHNvoOIqDeAeco//QF4ARgmhNAewJH/fXkA8FC95QfIiURFAW7szOULso0HiRACJWnK1gyTCRscGAPGrKvi6a0ZaFkjIFyS6dEegv0084Uh3WgsVr8V/PvlHFefr8I672vXrt0Giy76kyZNanD8+PGymzZt2mStjLe3tzE0NDS+bNmyrplAr5hZsGBBw2HDhu3q16+fIz1knF6/VKlS2SEhIfGhoaFFktp9+vTpNY8cOVJ21apV+Q6SBwwY0LtFixbntmzZssHX1/fuk7CsrCyaPXt21cGDBz998uTJr0JCQrLN77ds2XJo8+bNz+zevXtx5cqV080BaXR0tMe0adMatG7d+oXTp09/FRwcbLM7wMSJEx/5888/G/fu3XtPfuvPHhwlMtAiouoAfgfQSQhxNp/beBNACyFEd0fWV9K4r1HK6iEzFc4hohQhxGob+9kA4C8hxEwnqvcWZBr6XFJSUmDvyZYtQgikpKSY65Xv7TwoREoK/Iu6Ek4wATiRVPBxYg8qnb35yyxkZGVj3628Ewm7mr/ODYlFMF4qMSvr7u9FccC/X85x9fkqTtdCSEhI9pUrVxYWdT0KS2xsbGC9evWOFNb6zZs3T4iJiZmfv9oVXGJiokdKSoqH/TWti4uLc79x40bwd999t8TynshgMIjXX3/97KpVq+p+//33D73yyivnAWDmzJk1y5Qpk/DTTz/ttNxehQoVMhcuXPjP5cuXg954441G33777T6tfa9YsaLc8uXLW3Xr1o1bsphDSmSgpWQJrFzAbTgT+FiWzQFwioheALARgGag5WggZ+EDAJ+q/u0H4Kqvry98fX3zsbm7dQEA+Pr68o2KA0ric3NHJlZm1vl5ejq1/p7U+/MwPdDdHYmZ9z/QSoMo0O+Nq/Hvl3Ncfb5M3JX0vsnKynL39fV1+MmPs+uXdDqdDkOHDt1p68FzaGhoUlRUVID538eOHQtp2rRplK3ttmvX7uLGjRtraC0/d+6c90svvdTns88+W7Nz587ySUlJzv2nwR5IJSXQcmRMk15ZryCc2oYQ4jIRlSMidyFENhwfe2VzP0r6+bt9083/SRJRgf/DNG+Db1QcUALPUZKTrTKFQQfZulbS6Kl4BqkBer3q1+D+STbmFLvfCf79co4rz1dxO+ctW7bsOW7cuP0DBw68Zn6vQYMGA1599dW9n332WYvLly+HZWVluXt6embWrFnz8tKlSzdv2bIl9PPPP2917dq14OzsbHc3NzdjgwYNzv/4449/hIWFZam3v23bttKvvfZau0uXLpXLzs52B+REv56enpktWrQ49dVXX+22LGPNlStXPEePHt36wIED1TIyMu624hgMhqxatWpdnjNnzrYGDRokA8Dx48d9W7VqNSIlJcV30KBBQ93c3EwA8Oyzz+6YO3fuQcttO7u+WrVq1Z5ds2bN6jp16txtqkxISNC/+OKLLbZt21Y3PT3d0zyGycvLK6NGjRpXatWqdSMzM9Nt0aJF6rlDkZmZqXvhhRea7du37+HY2NigzMxMDzc3N2O5cuVu/t///d/2p59+OgYA9u7dG9ilS5fnMzMzDSaTyc3Pz68OAERERFw7duzYD/bOpVlwcHC2veO7dOlSSJcuXc6b/x0bG+tfr149m33rK1WqlHzz5s0Aa8uysrKoW7duffr06fPPkCFDru7cubO8I3VdsWJFuTlz5jSdMmXK3g8++KBFVFRUaFJSkq8Qgry8vDLatm17bN68eX8FBQXd/c87Pj7e/amnnup27Nixh4lImL97QgjS6/U5/fv3/2vBggX/OLJ/VvRKSqB1Ffaz9JUDcMXG8gQi8rWTefDuNogoCMAKIUQHO/tV9+V1pJ4AUAaAZgp4Vky4ueFGu3a4kp1ZYlqKTqYVSZf7XMq4GxCbbff+o9hxK2Y3kmaeOjf7KxWC/3KiD1bypaameiYlJRks3vN6++23O86cOfP3fv36XdPpdEhLS9P169evfadOnfqbTCaaN2/er+3atbul0+kQFxfn/tRTT3V/6aWXWqqTasTFxbkPHDjw6ddee23zhAkTVhkMhrtfhqioKM/hw4e369+/f+fdu3evt1fPXr16dS9Xrtydo0ePfq0OzBISEvSvvvpq4x49egy8cOHCN3q9XtSpUyclISHhs6pVqw776KOPNvXq1cvmfYKz61ueq+Tk5Fz3gIMGDWp3+/Ztn127di2qXr16mvn9jIwM3axZs6q/99573bt165bnBv/NN9/s3Lp169MrV65cX6tWrRSdToesrCyaP39+5RdffLF/jRo1vmnYsGFyy5YtExITEz+1NwavIEwmE8aNG9c4ISHBd8iQIXfvCY1Go87Nzc3mj5rBYDAZjUar/9kPGDCgrb+/f9pXX32135n6JCUlGc6fPx/+yiuvdHr11Vd3DRo0KNrb29sEAGfOnPEeNmxYxyFDhrTbuHHjZnOZ119/vbGHh0f2iRMn5kREROSa7yUyMtLv8ccfHzlo0KBzrVu3tpUVmxUTJePuETgG4Ak76zyhrJevbRCRD4BGAMzp4ZIANLA13xURhQFIUVqzABlohSnva5VpCOCG0v2QFWeenti7dDHemfs5sj3sdyev4+MLXzfX3hQ/HVIWHz9czaXbzK9wg2Nd6l19Du4X/X0KtEq7u6NdYBCa+Vt9cJqHZwHGZTL2oOnTp8+hAQMGXDN3K/P29jYtWrRo+7lz5yImTZq0s3379rfMy0JCQrLff//9Hfv27cv1Izt//vyq9erVu/jaa6+dVQdZABAREZGxYcOGTYcPH66Wk5Nj80fj3Llz3pcuXSq3evXqrZatX4GBgTnffvvtPjc3N+PatWuLfLoXk8mEnTt31l+/fv2v6iALADw9PU3/+9//TjVv3vy4tbLNmzc/t2TJkr116tRJMZ9bg8Egxo8ff+GJJ56I/Pzzz23NcZrLkCFDWtWrV+9p+2vmdejQIf969eo9s2HDhkfWrFmzQp0koyA++OCD6n///XeNX3755Zf8jJNPTEz02759+8oRI0ZcNgdZAFC9evW0devWbdyxY0d9ddfcqKiooMcff/ySZZAFAA0aNEj+5JNPVpUuXbrkPc18QJWU/8HXAShPRFOJqDSp+jAQkT8RjQPQFcACG9t4G8BsIuqqZPUzl9cRURXIyYlXCSFigbvjsP4AMIuI8qRHJaJwZX9zzO8pZT4EsJKI6hORm2p9dyJ6DMAyAP9z/hSw4q6pXwDKe7iuy/bHD1fD0LLhqOOT5/K779wAlHLPm8G3sZ8/Knl64Y2Kle6+51FCA4P7EWh1CgrG0hp18VrFSg4PAiyp55OxotCgQYM8GWpCQkKyfXx8Ulu0aJFnWdOmTRMSExNz/cheuHChVPny5RO09uHt7W3y9fVNPXbsmM1BjAcPHiwVGhp6yzJYU6tYseLNEydOlLK1nfvhzJkzPl5eXhnmLH3WPPTQQ1ZbUHr06HHe2vsAUKNGjfjo6GiHj2/ZsmV7jh49+qOj6wOyW9/o0aObtm3bdkTdunWvHjt27LumTZvaTCG7devW0qVLl55gbw6w7du3B82cObPrkiVLfgoNDc1XcFOlSpUrWt1MQ0NDs7y9vTPOnTvnbX6vcuXKt/7888+qkZGRVv/zHzFixGV1l09WvJWIroNCCCMRtQcwBcBOAOpgK0F5r5UQIhUAiKgNgG8APCKESFK2cVhJ0T4VMlug+aI2AYgBsBDAtxa7fgkyQItUWrzuVgnALQBf417Kd7M5kBMfzwPwkKpFLBPAOQDjhBD/uXk/GODl4hti92I0ZsgIwMdKF7b6vn7oW6Ysbmbd+z+kKAODVgGB2JOY4PD66vFkhV3v5v6BGBteETonA7r70aLVOzgEa+Ljcr3HPQdZSeTj42O1t4herzf6+/vnWebv7280Go257oXS09Pd169f33z16tUttPZjNBrdDAaDzeGoycnJ7h4eHjZThXt6emanpKQYbK1zPyQkJLgbDAabddXqeufh4aF5Hnx8fLIzMjIKbZ6tjRs3howaNapXaGjona1bt35jL8Aya9++/a1bt259bmuduLg490GDBg2YMGHCHx07dsx3ilm9Xm/zOjEYDNm3b982AEgDgFmzZh3s1atXpzZt2gzPyclxU4+P9Pb2Tu/Spcu/luPkWPFVIgItABBCJAJ4XXnZW3cHgCpW3j8MwOEsgMo+X1VejpYRAFYpL1aSpaaiR9Xq6CoEBm7fgkxvrzyrqOc4ctfp8j3vVlUvb1zKSM814bDBgRvyxwNKIVCvx8m0VJxPT7O7fkH46rW7BKrHN92PQKt3cCjCPTwwJyb3sExnE1oQgM5BwbiUkY5H/PKfzF8H2SKWZSU6mVm5GsoaDAi16HpZ3dsH+5Lt3xO4F2JL27Cy5bA/KRFDyoYj0ZiDP+/ce2AtSmTeTcZcY/DgwdttpflmRW/WrFlVZ8yY8dQbb7zx21tvvXXG1rpubm6mnJwcm/9BZGVl6cwJRUwmE7p3796tXr16l6ZNm3bClfW2JzAwMGf79u2/Wlt26tQpn86dOw+cN2/ejTFjxly6n/Vi+VNiAi3GioI+PR16aPex1UG29gAFS6bQMSgYT5YqjQnnTyMqIx2AYy1aIQYDXggrj7kxVwo/0NJp/1zoVIfuoVHv58qGY9GNGJfUxY2AUIO1h8DawUGv4BCstWi1eT6sPHqXCXV6/5YtQD/Uqo/9SQn49OrlXOu9E/Ew6vta7/rZt0wovo+9BnuDCAoz3BkQEoYBIXJIaXFqQWWsKHl6emYnJyfbHJS6aNGiis8+++wVW2N2fHx8srOysmzeZ2VkZLj7+voW+Xgbf3//7OzsbJt1NRqNLnnq4+XllZOVlVWgwbx79+4NnDp1ao/169cvateu3S1765ctWzbp2rVrNrt6Xrp0ya9MmTKJAPDXX3+VioyMrK7X63PM2RHVsrKyDABQrly5GlevXp1fkDlOnVGzZs3UDh06HN+5c2dFDrRKBv6flTEHqLt7vVz+obt/VzfpF2SMjzsRDDpdrlYsd5397bkpbWjqbos/1qqHEHfX9EQZVrYcAGB0uQrwtpHkwg226x1m8ECX0sEuqRMgP48Qd9vJOcINHuheugy+qFIDs6vUwAth5TEwRI45f7FcBXxbvTZ6BYc4ve+vq9XC82G5M/t663RWA+1a3tr/r7sRYU6FSqjn44t3HnpYc70upcs4Xcf8sGw54/Ys9qCqVKlSwoULFzSfwGRkZOgmTJjQLy0tzWaw0Lhx4zuxsbGlbSXNiI6ODq5du/adgtTXFp1OZ3JkDrSaNWumpqWlecXHx2t28zt69KhDKc3tqV69esL169eDCrKNSZMmtR0yZMhOR4IsAKhbt27svn37KtlaZ/v27ZWqVasWCwCtWrW6k5GR8UFKSsrHycnJsyxfPXr0+GvIkCHbrl275vIgq2HDhgP27dunmS2JiIQ59T4r/jjQYswB6v9Nw1RdwNRfIMsbVXVAZo+5NUHdquBQCwPlXddH54Z3InLfuM+s7HjmwkD9vYeaA0LCsLxmPfQIDoGHjcBPHYhaq3e6yejSZBNuIJQx5L0fUPfcK+XujhfDK6Kqtw+qe/vAjQjPlg3Hylr10T04BOU8PPM1N1CIwZAnqHLX6awet72tB+vdMbNyNTQLCLz7Xhl3dzxZ6t747PIenlhVuwE6lLI5ZluT1lXU2yLIdHbsGGP/VaNHjz534cKF8FdeeaVhSkpKrmAqJibGo3///u1q1ap1yV5Wu+rVq6dVqFDhRp8+fZ64fv16rqdfCQkJ+hEjRjyanZ2tdyYtu7PCw8Njp06dWtveejqdDo899tjRHj16dFUnZsjJyaFt27aV7tixY6erV686/2TKir59+15LTEz0mThxYsO0tLR83YdevHix3NChQ886uv4bb7xx+vbt2/79+vVrc/78eS918BkTE+MxatSopocOHar2wQcfHMpPfVypfPnyt6dNm/ZodHR0nqeJ169fN/z555+1W7RocbUo6sacx10HGXOA+iZUR4Tq3j44k5aKTkHB2HDrJgDZoqW+Ve0YFIzZFl3JtGQL+aOvvtc1ONCiZW520OdqCcvdutK3TKhm9zVrLEeaBSnZBq2NfzIfsZuqiLUxRaX17rlavQoq3MMDnjo3fFi5GgSA6VEXkGoyool/AHYm2n447K93/GevrMGAG1m5e/WYA6pKnl64lJGOVytEALDeopmf8WoBevc8rUk+bm4YHlYeOiKUcTdgWew1q2UBoJRej8ScHIQYDPigcjXoQHjlwmncypbj3OdWrQkD6RBuMWWBibNfsGKiVKlSGf7+/nlSW6v5+Phk+Pv7Z1m+FxAQYDWhg4+PT5qnp6fVwMjf3z9Z/e+wsLCsn3/+edlrr732xHfffdfGaDS6AbIlwWAwZD/66KOn169fb3UMjaV169atHz16dJu6deuOzszMvBtsubu7Z9eqVStq/fr1K/R6fa4vn63j0Dg2zfXnz5//64svvth19uzZHadPn75+/PjxF5Qy6X5+frmSgyxfvvzP0aNHt2zZsuXz5smVvby8MsqWLXurc+fOJ8uXL5+QnJycK7Wuvbr6+/tn+fj45Jpy3dPT07RmzZofX3755SfKly/fOjg4+M7Zs2eXADK9+5EjRyrYyzyYlpbm1b59+xG2Hpa1a9cucv369VsBmW5+7969S8eMGfN4q1atnktLS/NST8hcu3btqB07dnxnK+uimq+vb6afn5/dqeSV47d3Lef6LObPn7+rZ8+e3apXrz5Bp9OZcvWc0etzOnTocHj8+PGamR5Z8cKBFmMOcLPoIjizclVEZWTAQKQKtHQgJ4IJc7AGAOlWunZotWh1K10Gvyj7NP/vbHmTrw5qOgbl7bK3slZ9DDh5xOr2tf7fshZImBMmqIMzy0CrqV8ARoSVd2gMm5dOZ/VcqJf3KROKNoGy10k9JYBcUL02zqenobGfP2ZFR8njsLs3+/zc9LgBeS+3vGY9uBHdPY7Pq9RAmsmEACVwM6iCqtHlKqCBr1+u9xxlUAL5rXdy94jx0+sxofxDOJWagmWx2uW/r1kvT+vUwJAwfKkkDnnYy9taMaQac9+DctjFisqUKVNOAzhta529e/eus3wvMjJyhdb60dHRmtO/xMbGfmn53pNPPhkfGRm50nZN7YuIiMhQJuZ1eHJeW8fh7Prt2rW7debMmaWW75sDG7WgoKCcn376aSdkJuc8hg8f3szZur700ksXX3rppYuW7zdr1ixx3759ayzfX7Zs2R5b2zNLTk6e5ch6ahUqVMj85ZdftgDY4mxZS999951DWf8GDhx4beDAgetsrWP5WYSHh2ceOHCAE6r9R3DXQcYcoP6iuAHw1LmhhtIdzcydyOFU3C+XfwjTIu4lxrSW4U0r29wI1fggc7lS+tzd6NT1staSpG7VqerljR9q1rv7b60jsBZo1VbGIOUORHNvYWqlKijv6elQ1zT1dvzd9Ohp0b2tvq8fBoWWy7OtIHd3NPUPyN3y6IJQS/2pBLm73w2qANlyqP63enzdQ56eeMgzb5ZKR7iTDp2DgjGmXAXMr1Yrz3J759Ha8raBQQjSu6O5f6BmuWRj7szX3MDF2IMjIyNDN3nyZJsTC+fk5Ojc3d1dMgkwYw8KbtFiTItOh7hmzXAjJwvkdi940GsEMXoieLk5FmiZW5meCQnD30kJeLKU/Lc60NC6oVbv33wv3LZUEP5NSUJ9ZXLjXIGWAwGOelyWVqucer/fVq+Nm9nZqOkjAy1bY9XsaRMYhB0JMq24+nyuqFUPlzLSsU6V3a+al0+e8pryEWc9Wao0tqhakoxORBvq1quCBHkeStfPbhqJOvIzKbaPmxuW1KwLWyP3k418/8TYg0qn04nPP/+8U61ate4888wzVy0TPCQkJOgPHjxYaejQoQeKqIqMlUgcaDGmxcsL239eicW3b6K03h3IkV23tYIhPRG8rEzqa8uQsuUwRMnsBzg2d5a6v7ZQjdF6o+K9hErqMVNudjZpEiLXNrVWVx93WYMHyqlu+NXlHcmWqNY7OORuoKUuSkQIVLXUNfULQB8nUrHX8nYiKFOMDa+Ipv4BeO+y7OnizLglg6olLz+JJYaVLYfVN2NztVha4+PmhqU16iI6MwO/3rqJv5MSHNq+vWQkIs+xcpMWYw8Kg8Egpk6duu7VV1/tMXLkSB/zfFJmbm5uxhYtWpyYNGmSwwkoGGMcaDHmEF2uwEXdWnTvfXeiXGnW1cyJE+zRGpfVyNcfh1KScmWjA7QnlVW3qJj/rifKNSFyFS9vnE9PwxMW23SkJc1WIOFItsQuQcE4l56GShbd6yxb39Rd8zoFBTs05unrarWwPylRs0XIFg+dDi1V3es8baS0z1tW3dLpvAEhYehXpqxDQVoZgwFlDAY84uePzkddkyTrpfCHMPXyeXQOKmMz2QZj7L9p0qRJ5yZNmnSuqOvB2H8JB1qM2WAOSyyTYZjpcnUd1Gm2aNXy8YWXToeTSvILLVqZBt96qDL+TU5CE//cU2topY2wdq8+LaIKpl2+gDHlKgKQKd/PpqXeTShxt6zGNh1Nz+5I18EAvTu+qFoTAHBOdU4su9ypz3u6ybGubRU9vVAxn+OjANmS9lbFSkg1GnEoOQlnHCznXsAWrYKUM3u/UtV8l63i7Y1lNeshNisTy2KvcXsWY4wxVkCcDIMxLamp6Fm/IVa0aQ/PtHutUepgwDIAa1NKZsOrYDGOxg2OdcTSag3ycXPDY4Gl8iTbcOZmuKGfP1bVboAng0rf3WZDP/88rUiBGunP9Q6OO3IkIDOpal5BCYp8NVqPnipdBuEGD5uJHFzt8cAgdC5d5m6rWAMH0uPnJ5W7K8yoVBVN/QKwtEZdNPTzL/D2zGP0ONBijDHGCoYDLcZs8Lx9GwF3EnJ1HczdhS73+xGeXlhcow7mKK01Zm5EDgZaTrZoaGzUR9Wy5qMKYBxJjNG+VGl0CgrGa8r8UGal3PNOEGyNI8egHg7kqdNhTe0GWK7KfKg2NrwiFlavDS8nuvG5Sn1fPyytURczHGgpUrdGOpNEo6Aa+fljaqUqKGMw2F/ZATxtMSsJQkNDxxbVvqdPn16zT58+bYtq/1qOHz/uW61atWcLa/vbtm0r3aBBg4EF3U5xPX+MFQbuOsiYA0ijFUudJc98nx1qyDOZuwy0HLj5buYfiN9ux2uO9bJk0oi03HU6LKlRFwLC4bmcng4pi8iUZLQrVRqdS5fJs7yalzeeCQlDWSvHp1bOgax4lvW2F0TZmpSysDkawKhbI3P+A7nRS/4RsJLE09PzTXd39xzL993d3bPr1Klz6auvvvqzdu3ad/sZJyUlOT4Lu4slJiZ6pKam2v4hLALJycn61NTU/PebtiMxMdE9NTXV+bSnebdTLM+fNSdOnPDp0qXL05MmTdo2bty4PPOBWZo/f37ERx991O7ixYvfqd9fvnx5+Hvvvdf22rVrZcwTYAPy+q5WrVr0F1988WfTpk0TC+MYWNHiQIsxB6izz6kDLfXNqLWU3uYkGG0Cg3A0Jdnufpr4B2Bm5Wp5uh7mR4iTLRxDy4ZjqI3lRJQrQ6Kl9ypVweWkJNRwINuf6T94F6++Lv4LgRZj9xMRWZ2ENiEhQf/yyy837dq168Dz589/p9fr+cvF7ovIyEi/Tp06DcnIyPBITk62+x/qoUOH/N98881eOp1OWL4/duzY/tOmTdswevToiwaD4e7ytLQ03dSpU+v27NnzmfPnz3/t7e2tNfSalVDcdZAxJ6m7Dqpbi6xNVjy7Sg0srVEXD3t5O9xCUN/XD0EOdtMrTr/IDX390d7BcVRaLXH/FVrjzUqCImw8ZCyPwMDAnMWLF/+l0+nE2rVryxZ1fdiD4dSpUz4dOnR4dvDgwX/Vrl37kr31U1JS3Pr06dNv0KBBuy2XffHFF3U7dOhwePz48RfUQRYAeHt7mz788MMjISEht5csWfKQK4+BFQ8caDHmAHVAo2658NTpML1SFUyLqGK1+5tBp7vb9ax3sJwDqplF5sCCcKQ7YnEUoZEV8K2HKsPXzQ3jwyve5xq5xpsVK2FoaDlUy8ccXsVNSb222H9TRERE3NGjR0vbX5NZExcX556VlcWPURxkMpnwxhtv/DFr1qxIR9bv2bNnx2rVql174403jlsui46ODqxWrVq8rfIVK1a8debMmVL5rC4rxrjrIGMOUM9XZRlONfZzLHBqUyoIVb297Y5x+i/7vEoNHE9NQftS1u+Xanj7YGWt+gVOc15UWgcGFXUVCsx85jnMYsWJkBOr270s9+zZU+r1119vc+rUqYdycnL0AEBEwt/fP2XgwIH/fPTRR5E6Ve+D5557rnlgYGDGZ599dtja9ubOnVt5w4YN1Tdv3vy75bJPP/20yvLlyxtev349OCUlxRsAPDw8spo0aXJm/vz5uypWrJihXn/NmjVlp02b1joqKqqceZyOTqczBQUFJY4aNWrPm2++mWc2iR9//DF8+vTpucb2GI1GNz8/v5Q+ffrsnzdv3gF752TdunWhw4cPH7BgwYKfevfufcPWuv/3f/9XZ8mSJc0TExP9TCZTrofxRqNRFx4eHmdZZs6cOZU///zz1vHx8YHq4/Lz80vt27fvgU8//fRfnYNjhadNm1Zr8eLFzW7duhVoNBp1RAS9Xp9TsWLFGzNmzNjWrVu3XPuvWLHiiIMHDy4OCQnJtra9li1b9hw3btz+gQMHOjU5YO3atVNr167t0Jxib7zxRv3z58+XO378+KLbt2/n6Y6SmZnp7u3tnWf8oZqnp2dOSkqKze6Jx48f9+3du3ef77//ft3kyZNbnj9/PiwhIcHfaDS6eXp6ZjZp0uTs/Pnzd6qvu5ycHHrqqac67t27t47yHQJw9/uEJ5544vCaNWv+dPTzYc7jQIsxLTodbtWrh1vGHAjVj1BBEjOEu2DslVpx6jqoNr1SFbx3+SLGh+fuCVHN28dua09JDbL+K4jzDrJixmQy4dKlS2XHjh1rc3Zuk8mE3r17D+rSpcu/69at+9V8820ymbB58+YyI0aM6GUwGIzvv//+MXOZ1NRUDzc3N80ALikpyWAtccPhw4cfTkhI8P7f//63u2vXrrHmLmHXr183jBw5snWvXr26Hzp06Cfz+nFxce5Dhw4dPHbs2C1TpkxZ5e/vbwTkjfDKlSvLjR8/vk9oaGj6c889d8Vc5tChQ/5jxozpN23atA2jRo26ZN5HRkaGbvfu3UEvvPBCrxo1atweP378Ba36f/DBB9U//vjjzjNnzlxnL8j6+OOPqy1evLjFwoUL13bo0OGm5c332rVry77++uudLN/74IMPOs6bN29N9+7dY81lTCYTlDr28PDwMH744YdHbO0bABYvXlzh008/7Th79uxVQ4cOjTZvKy0tTffBBx/UGjx48OAjR47Mi4iIuBtIpKSk+GRkZLgBsBpopaameiYlJbkmJasV69atC12wYEHbLVu2fOfr62u0Fmh5enpmp6am2hwPkJGRoff3tz09R3Jysj42Nrb04MGDe44cOfKvkSNH/mG+jq5fv24YMWJEnutu5syZNa5evRq0b9++r9TJZADg4sWLXo899tjQ+fPnXxwzZozd7pEsfziEZUyLlxc2/boBE35YCm8H5lG6n0opc13dz7mlnNHYLwCrajdA21Ilv4WHMVZ0oqKiPAcOHNhar9cbe/fufd3Oul5ubm7GxYsX/6Vu4dDpdOjUqdPNd95554+VK1c2dkW9vLy8Mv/66681vXr1uqEedxMWFpa1evXqrZcuXSp3/vz5u32k9+zZU7py5coxH3744RHzzTEA6PV6MWjQoJjhw4fvXLBgQSP1PubMmVPnySefjBw3blyuBAqenp6mJ598Mv7NN9/cmpqaavWBuclkwpAhQ1rNmTOn3YYNG5aMHDkyyt4xLV26tPGUKVM2d+rUKU+QpWXevHmPjBw5cmfPnj1j1WV0Oh1at259e+rUqZs3bNhgfe4OC7t37w7v1avXvmHDhkWrt+Xt7W2aPn368Xr16l34/PPPa9rYhF1bt24tXbp06Qnbtm0rcDfUqKgozxEjRvSfNm3ahsaNGydprVehQoU7p0+fDrazrbypfq1ITk72W7JkyfpJkyadU19HYWFhWWvWrNl68eLFcufOnfM2v3/27Nmghg0bXrEMsgCgcuXK6XPmzFlfo0YNzbqzguMWLcZsMP/PVsHDE0+WKo1SeseSVBS2r6vVxtXMDIcy/BUVR+bsYsUXdx1k91NGRoaHn5/fJMv3vb290+vXr39x8+bNK+zd/FeuXDn93LlzC7SWd+jQIfbVV191yTiYqlWrxmjVx2AwiNDQ0FsHDhwIqlKlSgwA9OzZ80aHDh1+sloAQLNmzWJ//vnnXIFWdHR0qebNm1/WKqPVCpGQkKDv1KlT97S0NI8DBw58Fx4enunIMcXFxZVq0aKFzbFElq5fv16qZs2akVrLGzdufOfmzZuBjmzryy+/3G+ZsU+tevXqsVFRUQX6/Nq3b3/r1q1bnxdkG4BsiezWrVtvcyBsa91XXnnl6OOPPz7igw8+uDZq1KgLQUFBd7sRxsTEeLz//vt1o6KiyjVt2tRuq1JISMjN5s2bJ1hbZjAYRNmyZW8dOnQosGrVqmkAUKNGjVtLly5tsnfv3uPNmzdPsLxm7bVysoLjQIsxG8y/+ASgq5W5pYqKn16Pmnrfoq4GY4y5hKenZ6a19O7O+v777yvMmjWrzc2bN4MsxxgJIWA0Gl1y32OruyEAeHh4ZCcnJ999MqfT6fDpp59W//bbb1vcuXMnQAiR60mUyWSiwMDAXHOAZGRk2B3bYyk9Pd2jQYMGz965cyegV69e+xwNsgAgOzvbPTAw0Kn9ZWZmuj/33HODhw8fbrUnuxACpUuXTnBkWzqdTgwZMuTxHTt21ElLS8uTMSk7O1vfpk2bSGfqV1gGDx78mBACS5cu3WNv3Xr16qUsXbr0h7fffrvNrFmzOmZlZRkAOXYwKCgo4dFHHz3fvn17q2MELbm5udkcMeDh4ZGt7ir55ptvnt6/f3949+7dn83MzHRXD33w8PDIbNmy5amVK1du8/T0LK4jEUo8DrQY05KWhl4tWqKDyYSV2/8s6towdl9wMgxWUh0/ftz3rbfe6vnVV1/91Ldv3+vW5tzy8fF5vSjqtmHDhtC5c+e2W7Zs2Yonn3wy3rJl4dChQ/7du3d/pqD7SUpK8n/uued2jh49+myrVq2ee/PNN1Nmzpx5tKDbteX7779f6oqWkQkTJjQ+c+ZM2K5duxZVrVo1zfIcvfXWW/UOHz6sPZnjffL5558/vGXLlgYHDhxY6Oi8bt27d4/t3r37Sq3l/fv3b+OyCqrodDqsW7fuTwB5bmJiYmI8unbt2vOtt96qr5UMhhUcj9FiTIsQ8L0ag9Br1wFOdc0eENzjk5VUv/32W7latWpFDRw48Jq1G2CTyZRn2gKDwZCTlZWlOfGdViIFo9Fo85uSmZnp7ufnd3ec2MaNGx9q06bN8Y4dO+YJsrS25+npmZ2WlubUA/HQ0NCbn3zySWTVqlXTNm7cuGzhwoVtP/nkk6qOlHV3d89OSEjQ3F9OTk6eOhoMhuxbt25pptLNycmhxYsXV3Bk///880+lMWPG7KtevXqeIAuQrX6W7+n1+pzk5GTNzy89Pd3liTC+/vrr5mlpaV7169cf6+fnN0n9qlmz5riEhAR/Pz+/SQsWLIgAgEmTJjX49ttvbc5ZkpmZqTcYDEZb67haeHh45sCBAyMPHjxYMudTKSE40GLMAXzvyRhjxYdOpzOZTLl7O+Xk5OhsjfH57rvvHhJC5LrviYiISLhy5Ypm1p49e/ZUsvb+uXPnylnu3ywrK4tiY2NLN27c+I75PSVVuWbdVq9eHWH5XoUKFe6cPXtWM4nCV199Vemjjz6qprW8cePGST/88MPyGTNmdF22bFl5rfXMypQpc+evv/7S3N+2bdvybKNs2bIJhw4dCtUqs3r16rCZM2e2Ub/n7++flZmZmSegM5lMNj+/v/76K8LyveDg4ISDBw9a/fyuXLnieeXKlTCt7eXXyZMnv09PT/8wOTl5luVr69atC8PCwuKSk5NnmROQxMfHe2/dujVP3dWuXr0aVKVKlTu21smPDh06dF60aJFmIKXT6YS1AJa5DgdajDHGrOJJi1lxFR4eHjt16tTa6vc6dux47fjx45W2bNmSK1iIj493nzZtWq3PPvuslWWwM3LkyPNHjx6tPGvWrKrmCX1NJhP2798f0L179/ZHjhyx2hqUnp7u2bJly14bNmwIVbf0XL9+3dCnT5/2ERER18wJCQCgffv2V3bu3Fn70KFDuXJ4R0dHe0ycOLHhmjVrGlruY9y4ccc3b97ccO7cuZXV+8jKyqJt27aVnjlzZntPT0+brSAdO3aMnzt37s/jx4/vu2nTJpsDjYcOHXrwvffe6/DHH38Em4NIk8mEM2fOeI8ePbrpxo0bG1iWGT169L8rVqxo+e2331a0bPHav39/wLvvvvtEp06dTqjfb9OmzfXjx49XOn78eK6Bxg0aNLiycOHCxnFxcXfHtpk/i549ez4RFRWVJ6Dr06dP5LRp09rv3bs30PxeWlqa7ttvv63Ytm3bp+2NabofBg4ceG7z5s0N161bF2oZnGdlZdH06dNrXrp0KWzw4MGaiU/yq0qVKvFfffVVkzNnznhbLktKSnL7+eef6zVs2PCqq/fL7uExWow5gB/3sAcFz6PFikJAQIBTKabnz5//64svvth19uzZHadPn75+/PjxFxo1apT0xhtv/D5s2LA+ycnJvkIIcnd3zw4KCkqsXbv21V9++WVNq1athqm3U7FixYzFixevmDJlyhMzZsx4ymg0urm7u+cEBQUlNmvW7NzEiRN///PPP3MFWwEBAZmtWrU62bx586tTp05tPWrUqNKpqaneQggyT1i8Zs2aDeoyAwcOvLZ///6/u3TpMiQ9Pd1TWTczODg48ZFHHrm0fPnytYMHD+6pLtOoUaOkL7/88qfp06e3mzJlSk9zcg/zhMW9e/fer55Dy8/PL8fHxyfd8lwNGjQo5vbt2xvefffdxzp16rRG65y+/vrrZ5OSkgzDhw/vnZiY6Gc+nuDg4IQGDRpEffHFFxvefffdtuoy/fr1ux4TE/PLe++9137ixImlzEk+dDqdycfHJ61nz56HPv3003/VZR5//PE7w4YN29WuXbthOp3OdPXq1a/0er2YO3fuP/3793+iRo0aY7Ozs/WAzDoZFhZ2q3PnziebNm0ac+jQoVwtVFOnTj2ekpLi3q9fv4EpKSk+gEysEhYWFj9x4sSd33zzTVP1+lu3bi09YMCAwT///PP37dq1u6V1LtR8fX0z/P39sxxZ19pn0KlTp5uTJ0/+bcKECd2GDh2aKxGKm5ubsUKFCrHff//9D1qTLtvatiUfH59cdZ01a9ahp556KuSRRx4ZS0RCnQzDzc3N2KRJkzMzZ87k8VmFiPiJZfFHRP4AEhMTE2FvQjtbhBBISUmBr69vgSbdfVCIlBSQn5w/68szJzG2WoGm7/jP4+vLOcX1fCXm5GDgSTm36Ma6jxSbCaSL6/kqrlx9vpKSkhAQEAAAAUIIu0FRSEjIq5MnT2748ssvny/wzovQ+++/X2Pjxo019u7du66o68Kc16BBg4FjxozZ58g8Yoy50qhRo2ovWLBgCXcdZIwxdpf6lpwfw7H/unHjxjV69dVXG2gtz8rK0hkMBqdSnrP7p2bNmkNiYmJsJePQeXl58efHigwHWoxpIcKdqlVxuXJlTsXGHhh8pbMHSUhISNoff/xR69SpU3lmf8/KyqLt27c/XL169biiqBuzz93dPefjjz+unZSUlCfz4IkTJ3yuXbsW0rx5c4e6CDJWGHiMFmNavL2xfutmrEy4hU5eeeZOZIwxVsK99dZbp3fv3h3RpEmTMQByjWHR6XSm2rVrX5o5c+a/2ltgRenTTz/dPGrUqO4LFix40s3NLVdiEA8Pj8xRo0Ztq1Klis1xTYwVJg60GLPB3HWKn/KzBxF3HWT/dXq9XmzevPl3AL8XdV2Y89q3b3/rwoULi4q6Hoxp4a6DjDmAAy3GGGOMMeYMDrQY05KWhp7tO2B+r/7Qp3PPA/ZgUA9H5Ky0jDHGWP5xoMWYFiFQ6tw5PHTxIsA3nOwBwfNoMcZY4Zo7d27lDh06dC7odp577rnmEydOzDPZNSs+eIwWY4wxq/jxArtfSpcuPWHRokUrunfvHmtrvZYtW/YcP378/gEDBlxTv79q1aqw6dOnt7569WpoVlaWu/l9IhIeHh5ZLVq0ODVnzpw9FStWzFCXS0hI0L/00kvNtm/fXts8ybF5mZubmzEkJOT26NGj977yyislej6w/7IJEyY8Mm/evC7r16//ukuXLjeLuj6OSEpKMqSmpmqmpXdUamqqh5ubW7H+qe7Xr1+bX375pZm7u7tmmv3Q0NBb58+fvzvWrlSpUi/n5OTYjFEGDx6886uvvjrgyroWhhIVaBFRIIDJADoDCMa9oTO3AewE8K4QwuaPNBE1AvAOgDoAvJW3jQBiACwAsEgIYVSt7wHgfwCeBuCr2pQJwBUAM4QQv6rW9wYQByDFzuGMFEJssLMOKyZ4glTGGCs8d+7cCXjhhRf6Hzp0aKFlMKSWmprqmZiYaFC/t2rVqrBRo0b1f+utt34bPnz4pcDAwFw3dFeuXPEcNWpU6z59+jx14MCBVeplbdu27VOqVKnUX3/99Yf69esn63T3OvqkpaXp1qxZU+6tt97qEhcX5z1z5syjLjpc5qTp06fXPHLkSNlVq1Ztt1wWGhqaFhISEl+qVKnsoqgbsy05OdnzpZde2jRr1qxIR8tkZGR4pqenzyzEat03JSbQIiI3AH8C2ACgDYDbQhlAQEQBAIYB2EtE9YQQaRrbaATgZwAvAfhTCJGpvK8DUBXAhwBqAJikKvamsqypEOK2alsEGaz9TERXhRCRyiIDgHghRETBj5oVFxxmsQcFX+usKHh4eGS1a9fu6FNPPdXr33//XaHX6x1+Sj916tS2r7322qZJkyads7a8YsWKGevXr98cHBz8Snx8vHtwcHA2APz8889h8fHxAQcOHPjJ2v68vb1NgwcPvhoeHr6qb9++QzjQKjqJiYkeKSkpVluAJk+efHry5Mmn73edGHNESRqj1QtAlBBiqhDillCN0hZCJAohPgfwG4BRNrYxFcAEIcRv5iBLKW8SQpwBMAhAPyIKVZXpAuAddZCllBFCiGMAPoNs7WKMsf+UYt0fhf3nLF++fJcQgoYOHdrKmXJXr14Nee655y7ZWsdgMIjy5cvHnj59+m7PlH/++Se0fv36l+wFdW3btr0NANHR0QXu6sUYe7CUmBYtAHUB5GkytrAVQM/8bkMIkUpEhwBUB2DugrgcwAUb24wG0NpOvVgJx0/52YNCfa1zoMXuJ71eL3755Zc1TZo0GfHFF19cGz9+vK3/e+/KyMjwDA0NzbK33vHjx79Xdw2MiYnxDw4OTnVkHwEBAclHjx4NqFChQpyt9SpWrDhi/fr1K955551HT506Vf7WrVsB2dnZ7m5ubsbg4OCECRMm7Bw3btxFdZnnnnuueVhYWMqzzz57YeLEia32799fIycnx+2ff/75unr16mkAMGfOnMqff/5565s3b5YymUw6QE6oHBAQkPzss8/+PX369OPqbZq72rVo0SJ6+fLlDa9fvx6ckpLiDcjWwyZNmpyZP3/+LstummvWrCk7bdq01lFRUeWMRqObeT9BQUGJo0aN2vPmm2+esTzmlStXlps2bVrbmJiYEHMZNzc3Y2BgYNLEiRN3fPDBBx1v3LgxT11m2rRptRYvXtzs1q1bgUajUUdE0Ov1ORUrVrwxY8aMbd26dYsDgL179wZ26dLl+czMTIPJZHLz8/OrAwARERHXjh079gMAxMXFuTdu3HjYlStXFqr3ERkZ6Td+/Pi2J06ciMjKyrrb3dTT0zOzSZMmZ+fPn7/T8vjLli07Zs+ePYsmTpzY6tSpU+G3b98OzM7O1hsMhuxatWpFzZkzZ1uDBg2SbV0DAJCVlUUvv/xy43Xr1jVOSUnxVo/9A4CcnBz9I488kqcV7v/+7//qLFmypHliYqKf+nMOCgpKHD58+N4pU6Y41HJnMpkwYcKERuvWrWukbIuICO7u7tnVqlWLnj179p/NmjVLtDx2y89JrVq1as+uWbNmdZ06dewNjSk2KlasOGLLli3L33nnncaRkZEP3bx5MygrK8vd3d09p1KlStc+/vjjP9u1a3dLXebVV19tsHjx4tYZGRkeOp3OBMgMvEIIXdWqVS//8ssv6ypUqJBpfY95laRAqzwAe8321wBUtLE8QAhh7wLJtQ0hxBd21q8DgAfJ/hcRIbl8ONJMptw5rxn7D+NLnRWliIiIjAULFvz83HPPPd20adPvLG8GC0IdZAGA0WjU6fV6kyNl3dzcTFlZWXZ7AaWkpPj07NlzQPfu3Q/Pnj17b+XKldMBICcnh1auXFluwoQJfSpUqLCyZ8+ed8eTp6amekRFRem7du06oGfPnoe/+OKL3ZUrV04313ft2rVlp06d+tTnn3++esCAAdfMLXAmkwmbNm0qM3LkyN4BAQGZ6q6TiYmJHrt376519uzZspMnT97Zu3fv6waDQQDA9evXDSNGjGjdq1evbocOHfrZXCYuLs596NChg8eOHbtlypQpq/z9/Y3quo8fP75PaGho+nPPPXfFXCYyMtJv9OjR/adOnfrL6NGjL5r3AQCHDh3yHzlyZMe4uLhg9TlavHhxhU8//bTj7NmzVw0dOjTafJxpaWm6Dz74oNbgwYMHHzlyZF5ERERGy5YtExITEz+dNGlSg+PHj5fdtGnTJstznpGR4ZaSkuKjfi8nJ4d69Ogx8Mknnzy2YcOG39Tj9mJiYjxGjRr1uOXxA8Dt27dLde3atV///v3//fbbb3eEhIRkAzJpyqRJkxp379594MWLF7+x1wo6fvz4Jrt27aq2Zs2aH5o2bZpoee29//77NTZu3FhD/d7HH39c7ccff2zy/fffr2rVqtUdcxmTyYQNGzaEjh49uk9ISEj6iBEjLtvaNwC8/fbbdVatWtV0wYIFq7t27Rpn3lZCQoL+tddea9SjR4/Bly5d+srb2/vu9Z+YmOhva5upqaleycnJ+Yob/v7774j69evXiImJKZORkeFBRNDpdKbAwMDkLl26RH722WeHPD09c30XhwwZ0mr37t01EhIS/HJyctyICAaDISs8PPzmW2+9tevpp5+OsbfflJQUn27duvXr1KnT8U2bNv0cERGRAchr7f3336/Vr1+/QWfOnPnK3J34xIkTPt99912b1atXL2vTps0t9ed2+/Ztfd++fTu9/PLLLVavXm2v4eeuktR10A0yaYUtOSh48OjwNoioGYBxABZbLPImoulE9C8RxRBRLBHdIKKzRLSCiGrk3Rordry9sWLvbgz7/RfkeHkVdW0YKwLcpsXuv169et0YNWrUtn79+g1ISEgoSQ+EAQBPP/30/jlz5hwyB1mAbK0bNGhQzODBg/d8+eWXj1iW2bhxY5Mvvvji11mzZkVWqVIlXX2DN2/evEeGDh26e9CgQTHqG3ydTocuXbrcfPPNN7csXbq0seU2TSaTbt++fSsHDhx4TR0AhYWFZa1Zs2brxYsXw8+fP3/3P7c9e/aUrly5csyHH354xBxkqes+fPjwnQsWLGik3sfs2bPrPvHEE0fGjx9/Qb0PAGjUqFHS0qVLf7Nszdm9e3d4r1699g0bNixafZze3t6m6dOnH69Xr96Fzz//vKatc2zP6tWrw9zd3XO++eabfZbJUcLDwzOtHT8AZGdn619//fUd06dPP24OsgAgMDAw55tvvtmn1+uNa9euLWtv/+vWrWu8cOHCX5s1a5YnyNKydOnSxjNmzPjj8ccfv6Muo9Pp0LNnz9iRI0fuXL58eT1HtnXgwIHyY8aM2dGtW7c49bYCAwNzFi5c+E9AQEDK4sWLH3KoYhoWLFgQERwcPD4mJsZml9qHH344/ubNmwEvvPDCgYMHDy5MSkqalZycPOvmzZufLVu2bNXevXurDB8+vIW6zEMPPRRz48YN/2+++WZtVFTUnJSUlFnJycmzzp07N++FF17YP3bs2H579uwp5Ug9e/fuffiLL744ZA6yAHmtzZgx43jVqlWvfvXVV1XM70dGRgaGhYXFt2vX7pbl5xYUFJTz1VdfbWvfvn2UI/s1K3E/YMUBEXkBmAZgMICnhRDqbgAZkN0JCUBvANeEEFlKOR8AXQFsIqIGQogEje17AFBfuH7A3abLfNfbXJ4nIXWM+lwRePJWe/j6ck5xPV/q6phMAoKKR/2K6/kqrlx9vu73ef/www+PHDp0KLx79+5ddu3aVaIy9D733HOavVwaNmx4c+vWrXketlaqVOmaVmry69evlxo8ePAxrW22atXq5owZM/LcdNavX/+CusVCzWAwiLJly946ePBgqSpVqqQDQM+ePW906NDhJ639NGvWLPbnn3/OFWhFR0eXatas2RWtMrVr1041GAy5unV++eWX+3U6neYFVb169dioqCiHbqK1nDx5slT58uXjtZZbO37l/Wx1i52lihUr3jxx4kSpfv36Xbe1/6SkJL/mzZsnOFPnuLi4Uo0aNdIsU6tWrTs//fRToCPbWr169RZvb2/NxonKlSvHnjlzphQAm2MbbRk5cmTUyJEj7fX6wpdffnkQwEHL9w0Gg3j88cfvrF69en2TJk1GAdhjXnb69Oll1rYVFBSUM2HChAuRkZH/fPbZZw1atWplt2XJ1vfx4YcfvnnhwoW719ojjzyScO3atTKrVq0K6969+w3LhwfVq1dPq169ulPnrMQGWkRUHcDvADoJIc7mcxtvAmghhOjuRJkOAOYA+AdAQyHEDfVyIUQGgEbWygohUgH8RESPAegD4FuN3bwFmYI+l5SUlDxdH5whhEBKiuw5yenK7RNCICtLPtDKys6+e+6YdXx9Oae4nq9M0737stTUVBgL8JvjSsX1fBVXrj5fRfH7t27duj/q1Kkz7OWXX35k9uzZ/973CuSTl5eXZndEf3//7MzMTIPl+w899JBmUJCZmenu7++vmbo8KCgoWz0Gycxet0gPD4/spKSku+V0Oh0+/fTT6t9++22LO3fuBFi2RJlMJgoMDMw1PikjI8Pdx8fHZlp1y6BKp9OJIUOGPL5jx446aWlpebqLZGdn69u0aRNpa5v2pKamunt6etqsl+XxK3Uz2brP8vT0zE5JSclzri0JIcjZ+7Xs7Gz3hg0bjiWy/nTLZDJRjRo1ohzZVlpamq5///7tDx48WDU9Pd3TcnlWVpahfPny25yqYCGpWrVqmtFodEtISNBbtj5qqVOnTvxPP/3kUOuere+jl5dXdlJS0t3zU7NmzdRx48ZtGTduXM9hw4b5qj8LNzc3Y9WqVaMXLVq0yZlxaiU20FKyBFYu4DYcztFPRKUAzAdQDcDzQoi9Bdj1KQAP21j+AYBPVf/2A3DV19cXvr6+GkXsMz+R9PX15RsVB4i0NPTv2w8djEbsWLe2QOf+QcDXl3OK6/lyVwVa3j4+8HZzK8La3FNcz1dx5erzZTI5NJTJpXx9fY2rV6/++YknnnihefPmNywnKXaWyWSCRZcsU05OjkN3w0ajUWcwGArtJHh4eDh0g1mYNmzYEDp37tx2y5YtW/Hkk0/GWwYKhw4d8u/evfszBd3PhAkTGp85cyZs165di6pWrZpmuZ+33nqr3uHDh8sVdD8l0fHjx+eou7jl1/PPP98mIyNDf/jw4YXh4eF5Ejc8/fTTjxd0H67k7u6ek5SU5HCg5efnl52Zmeluf03nTZ8+/bhlchlABq+jRo1qMWLEiCf//vvvtY5ur3g8qnSMI2On9Mp6BZFnG0RUFcBeAMcBNC5gkAUAabg3WXIeQohMIUSS+QUgWakHv+7nSwiEHD2GaidOQgdR9PXhF7/uw0tH927Ki7ou/Cper6LQqFGjpJkzZ64dM2ZM33Pnzln9f9PT0zMjNjbWbitDnTp1BqvHdYSHhyfdvHnToSdoiYmJfvXq1StwYo6kpCR3Dw8PuxkS1QwGQ3ZKSorm/c/t27fdLbvnOUJpKbtbbuPGjQ+1adPmeMeOHfMEWQBgNBrzXAQeHh7ZaWlpmnUzmUwwmUy5yv3zzz+VxowZs6969ep5giylTJ79eHl55WRlZTn81Mfb2zs7MzPT5j2j5fG7EhEJWw8nrJ1Ld3f37Bs3bmiOd4qPj3f/+eefwxzZ/5EjRyq99957e60FWYD1cwzAZp0zMjLsfses6d69e/ukpCSbn11OTo6bv79/DiAzTY4YMeJRW+unpKToDQbDfZ2g2tvb2zRz5swDZ8+etZV0L4+SFGhdBWBvAGI5AJp9awEkEJG9H9Vc2yAidwBrAUwVQkwXQthMyEFEjxKRvSc+XgDS7azDGGNFikdDseJg9OjRUd26dTvYvXv3PtZuEMuXLx/33XffVbK1jaysLLp69WpojRo17nb5adq0adzRo0cjcnJybEaR27dvDwIAZ1I6a4mMjAwOCwu740yZsLCwO0eOHAnWWv7XX38Fh4SEOLXNrKwsio2NLd24ceO75ZQ065pf+9WrV0dYvlexYsU7Z8+e1azbpk2bylh2azSZTDpbY7T++uuvPPupXr16wvXr14O0yliqVavWnatXr2rWy9rxu5K/v3/y33//Hai1/J9//ilv+V6ZMmUSdu/eHWptfQCYN29e1blz5+ZKeuLt7Z2VkZGRJ6A0mUw6Nzc3rS6IiIyMzJMIw8/PL/Xo0aN+1sr8/fffgbdv387XuLkTJ05U2LlzZ2mt5VFRUZ5KBsIcQAahmzZtqm9rm6dOnSodHh7u8s/u3XffrTV48GDNefx0Op2w7FJrT0kKtI4BeMLOOk8o6+VrGySTVTQCoJ4nYiiAk0KIlQ7W0xdy/JUt1QBctLMOK0a4oxJjjBWd77777i9vb+/MEydOVLFc9s4772z/+OOPO3388cfVrD05j46O9ujRo0eHatWqXTGncQaAAQMGXCtdunRihw4duh4+fNjP8ml+RkaG7scffwwfOnRo3+HDh+8oSP1NJhN+/PHH8GXLlrUaM2bMYWfKjh49+vDixYsfW7FiRTl1HU0mE/7444/gDz744MkhQ4YccnR7169fN/Tt2/eJSpUqXVMngmjfvv2VnTt31j506FCuNN/R0dEeEydObLhmzZqGltsaN27c8S1btjSYO3du5aysrLv/VcbHx7u/9957NSZOnNhZr9fn6iXUoEGDKwsXLmwcFxd3t+uXyWTC/v37A3r27PlEVFRUnmCjb9++1xITE30mTpzYMC0tze69a+/eva9nZGQYRo4c+ajlNXH9+nVDnz592lsevyv16NHj4IgRI546ePDg3XNpMplw8OBB/wEDBrT+999/81zHzzzzzKFPPvmk/bp160Itr8UtW7YEL1iw4LE+ffqcVL/fsmXLmD179lS/cuVKrnFYtWrVujJ16tRH1efKZDJh69atpdu2bdstJSUlz9i4jh07Rj7//POdT5w4cTdVfkJCgv6TTz6p2q9fvwGenp75etDQunXr02+99Vb7yMjIPEHciRMnfPr27dutQ4cOd8dgNmvWLMFkMtGYMWOaWH7WOTk5tGTJkgpr1qxpNm7cuCP5qY8tTZo0id+yZUv97du3B1l+BiaTCe+8807Dhx9++Koz2yxJY7TWAXiTiKYC+ALAbaF0QicifwDPQmb0sxUFvw1gDRHlANgqhMhUyusgx3t9DGCVECJWVaYRgI1O1PMAgIZE1BvAOiHE3U+KiNwAdATQC8AMJ7bJGGP3BT9UYEUhICAgydZynU6HX3/9dV3Tpk2HWXb36tu373WdTrfy3XffbTtz5szOWVlZd2/giUgYDIas5s2bn16zZs0vltvdsWPH6pdeeqnZU089NSg5OdlH/bTazc3NWKZMmTsTJkzY/sorr5yzLKulVq1a4yxbhnQ6nSk4OPjO22+//VuvXr1yJdHy9fW1eQPbt2/f6zExMb9Nnjy506hRowLNE9kSkQgICEgeOnTo36+99lqepGDbtm1rZJ7g10w5H9lNmzY9s3bt2lzZHAcOHHht//79f3fp0mVIenq6pxCCPDw8MoODgxMfeeSRS8uXL187ePDgnuoyjRo1Spo3b97P06ZNa/e///2vh9FodNPr9TkBAQHJVapUuf7DDz+sa9Wq1Rh1mblz5/7Tv3//J2rUqDE2OztbDwDe3t7pYWFhtzp37nyyadOmMYcOHcrVRc7T09O0Zs2aH19++eUnypcv3zo4OPjO2bNnlyjLjL6+vrkmnjYYDGLDhg0/vvTSS09ERES8lP3/7d13mCRV2ffx7z15ZmczmwMLLDmJIPqIAcWAgCiICVBR4IFHBRUMgL7gGkFRQFAJYgQVRQkSFEFBMJAkLywsy+acd3Z2Yt/vH1U9W9PbuXqme6Z/n+vqa3e661SdPlPdU3edc+7T3d13TiQXbP7DH/6wQzbLXOfhiBEjOkePHp0z4LjyyisfPfvss3n3u9990tatW1vc3ZqamjonTpy4/rDDDpv/pS996Z4777xzj2iZ884774W2trb6T3/60+/9yEc+0heUhL09m0899dSHUhfxPv300xc99NBDLxx00EFnTJo0ad3cuXNvALj++uv/dtJJJ71z6tSpn+nt7a01M29tbW2fMmXK2pNOOumJ559/fnVra2u/z9E111zzr09+8pOve+tb33pKMoFGS0vLthkzZqz+3ve+96dzzjmnX+K4a6+9dtYFF1xw7FNPPXVNpiGKAFdfffV/Tj/99Jp3vOMdH+vo6GhMfsbMzJubmzuOPPLIJ3/4wx/+J7l9Q0OD33zzzTd97nOfe+vUqVPfkFwEO9kWEydOXH/xxRffmrrQcDqtra1bm5qaMo5EGzlyZGd0GOfRRx+9+v3vf//Dxx9//Ee7urrqoz2vZuY777zzip///Od35DpulA2lVLlmNhr4MnAUMJ7t1wQbgQeAi5JZAM3scOAnwKvDeU7JfRwEzCFYaDg53jsBLAOuA66PDg80s98C7wCyjeN90d37Jhaa2f7At4BXAdHJet3AU8CX3T3vSDwMJDdt2rSJUaOyrieXVTILlSaT58fb2rCRwXfdT196gU/M3rPMNapsOr8KU6nt1Z1IcOyzwQ333+97IK21lXE/rlLbq1KVur02b97M6NGjAUZH/6ZmMnHixHMvuOCCgz772c9mTK08HI0bN+6zTz755NUzZ86MndAgjmwL/A625ubm87Zt25Z38jGpTNOmTTvz5ptv/m2haeur1RlnnLHvtdde+4vK+AuaJ3ffBHwxfOTa9n5gh65Zd38CyDudu7t/qIAqJss8A7y70HJSuXRZJ9UielE+hO7DiUgZXH/99TP32muvzYcddtjGTNtkm/cllWPWrFmnLVy48CeZXu/t7a0ZMWJE2bNjDjVDaY6WyKDbNm4cm8aOKXc1RAaNbiqISL7+85//TDn77LPfsXbt2rSptq+//vqZ48ePH5CEE1JaXV1d9Zdffvnsjo6OHWKDe++9d3xHR0fjPvvsszVdWclsSPVoiQyqESP4+X8f5fZNGzi+ZUTu7UVEpE851t4qtxEjRrRnmxMyWEaNGtXV0tIyIKnLoy655JLHjzrqqGkzZ878XE1NTSLaI25mPnbs2M2XXnppQXNapDy+853v/Om88847+oILLnhfbW1tdAqNt7S0bJszZ87tdXV16p3MU/L7T4GWSB50l1+qkf6iSrE6Ozu3dXZ2VsZq14NoyZIl15a7DgAXXnjhXGBuzg1jGjduXM9//vOfPw70cWTgnXzyyUtPPvnka8pdj+Givb0doFNDB0Wy0IWmiEjhtm7dunnz5s1ph5OJiAxniUSCTZs2GbBNPVoimWzbxns+eCJv6O3mvzf9tty1ERkU0d5b3WiQYvX29i5++umnaW9vr2lpaam+MYQiUrUee+yx0StXrmwDFqtHSySTRIJpDz/MAY/9F1P6NakSGiYrJfLcokWL1j/44IPjyl0REZHB9NBDD01YtmzZK8ASBVoiIpKWq09LiuTu65YtW/bcgw8+OLEak2KISHVqb2+vefjhh5tXrlz5iLu7Ai2RPOguv1QLLQYspbJx48Z/3HHHHVuuvvrqXRRsichw197eXnPhhRfu/fDDD78C/BeUdVBEREQGgLs/YWbXX3vttaf29PTsdvLJJy8aN26cFjwVkWFn4cKFTVddddVuN99886JFixZd5e6rQIGWSF5MfVpShTQ1UeJy93+ZGVdcccWHb7/99j0OOeQQDj300PXTp0/fNnLkyJ76+np1dYnIkNPR0VG7ZcuWunnz5o18+OGHRz/zzDPdCxYsmL9ixYpr3H1hcjsFWiJ5UJgl1cQIMg4qzpJSCIOtZxYsWLD3v//97wOnTZv2qhEjRoyur6+vq6mp0deriAw5vb29ie7u7p5NmzZtWrJkyV97e3ufBV50934LhSvQEsmiu7mZXt3WlyqTDLRESsXdtwCPAI+YWTPQCjQDmisuIkNRD7AN2JIaXEXlFWiZ2ShgCcEXYyl1A29090dLvF+R+EaM4Mdzn+HuzRv54IiWctdGRGRYcPdtBBcoIiLDWr49WiPDxwXAv0t07CnAr4EJJdqfiIiUkNK7i4iIFC/fQCv51/Ypd3+gFAc2s5kp+xapOMmTU5MIRERERKQQeQVa7r7czE4F/lGqA7v7YjM7rZT7FCmpjg6O/cRp/E9PNy/+8hflro3IoEneWNBdMBERkeIVkgxjI/ALM7vW3e8pxcHd/ael2I/IgOjtZZe/388uwHwttilVxMyU211ERCSmQrL9LCKYV/VnM3vBzD5pZqVOjiFSoTR4UKqPYi0REZHi5R1ouft/3f0w4DXAw8D3gaVm9j0z222gKigiIiIiIjLUFLx+hbs/7u4fA2YC3wM+BLxoZreZ2RGlrqBIJVB/llQTne8iIiLxFb1QoLuvdvevAzsDJwE7AX81s+fM7Awz08JDIiJDmEYOioiIFC/2iuzu3uPuvw2HFb4WeBz4AbDMzL5rZrvEPYaIiAye7VkHFWqJiIgUK3agFeXuj7r7R4EZwGUEPV0vmdktZnZ4KY8lMpg0lEqqic53ERGR+EoaaCWFwwq/RjCs8CME87nuM7MHB+J4IgNixAi+v+Al3vXUY/SO0EhYEREREcnfgARaETMIshTOBnqB5wb4eCIlpYFTUp2CPi2d/yIiIsUrZMHivIXZB88GjgbWAVcAV7v78oE4nshAMw2mkipihqIsERGRmEoWaJlZM8EwwbOBvYEngVOB37p7Z6mOIzJoOjo45lNncWhPN8uuu67ctREZdFqwWEREpHixAy0zmwl8CjgNGAXcApzp7g/F3bdIWfX2sufdf2ZP4He9iXLXRmTQqP9WREQkvqIDLTN7E0Hv1XuATcC1wI/cfUmJ6iYiImWkDi0REZHiFRRomVkjcCJBgHUAQXKLM4Ffu/u20ldPRETKR6GWiIhIsfIOtMzsKOAXwDjgNuBz7n7/ANVLpKKYxlJJFdHpLiIiEl8hPVrrgR8BP3P3hQNTHRERqRTqzxIRESleXutomVkDwRDBn5QqyDKzRjP7hZnNKMX+RAaS7vBLNTGtoyUiIhJbvgsWTyBI3b5fCY89GTgZ2L+E+xQZEFpHS6qJhsqKiIjEV8jQQQNOMrPXlOjYY0q0H5GB0dLC9595kn+0beHEluZy10Zk8KlLS0REpGj5BlprgTuBaeGjVO4DXsh3YzMbA1wAvAvYie0jutYDDwBfdfdVOfZxMHARQe9cS/h0L7CMIEX9z9y9N7J9I/AV4MNAa2RXCWAx8A13vyPlGHXAJ4DTgalAbfhSO/AMcJG7P5nn25ZyMaO7pYXORI9u8UtVUpwlIiJSvLwCLXfvBN49wHXJysxqCQKz24HDgfXu7uFro4FTgH+a2QHu3p5hHwcDvwc+DdwXvi/MrAbYHbgE2Av4fKTYeeFrh7r7+si+jCBY+72ZLU0JnC4FZhAEZwvcPRGWaQLeDtxiZscp2Bo6FGZJNdH5LiIiEl/RCxaXwXHAQnefk/qCu28CrjCz3YAzgMsy7GMO8Bl3vyulfAKYZ2YnAXPN7LuRnrGjgI9Gg6ywjAPPmNllBAHVkwBmNgV4L7B36tpi7t4B/MnM6sO6vCffNy9l0NnJUV/4Eq/u6WbzVVeVuzYig87VpyUiIlK0fJNhVIL9gb/n2OZesifXyLoPd98KPA7sGXn6RuDlLPtcQtB7lbQX8FiOBZzvy1FPqQQ9Pez/x1t4++13UNPTm3t7kWFCPVoiIiLxDaVAazqwIsc2y4GZWV4f7e5thezD3X/g7j1Ztt8PmF9IPcMeuHE56iEiUlbqzxIRESneUBo6WEuQtCKbHuK/p7z3YWavA84C3hx5Op96ylCjW/xSVXTCi4iIxDWUAq2KYWbNwNcI1gH7sLsvKPH+G4HGyFMjAdydMP9HUZLl4+yjmrh73+WmOWq3HHR+FaaS2yt53ldS/Sq5vSpRqdtL7S4iUrghG2iZ2Z7A3cCR7v5ikfs4D3i9ux9bQJl3AFcCDwMHufvKPMo8AVzq7jfmeZjzCVLQ99PW1kZNTfGjPd2dtra2ZJ2K3k+18LY2RoX/7+zu7Gs7SU/nV2Equb2SF9Vb29tpq5D5iZXcXpWo1O2l7z8RkcIN2UDL3ecBu8bcx8X5bmtmY4GrgT2AT7j7Pws4zkEFVu3bwPcjP48Elra2ttLa2pqhSF71AKC1tVUXKnmI3r9trG+M1fbVQOdXYSq5vWpqDBLQ3NJCa1NlLNZdye1ViUrdXolEIvY+RESqzVAKtPKZO1UXbhfHDvsws92B24DfACdGFzROI/Y8sXB9r87I8fv+jfsHM7kPXajkIdJGZrqLng+dX4Wp1PbqGzJLZdWtUturUpWyvdTmIiKFK2mgZWajgJ2ADndfHj7XmFwYOKalwOQc20wFFmd5faOZtebIPNhvH+GaV7cAc9z9plLUM2yn9dm2kQrQ0sJlD/+bh9vb+GBLS7lrI1IGmpcjIiJSrNjp3c1sVzP7jZmtAzYALwFLzOwN4SYvmtkCM/tEzEM9AxyRY5sjwu2K2oeZjQAOBuZFnv4oMDfPIAvgBeAQM8t2ZZ6rnlIJzNg6fhybxo3t17slUi0UZomIiBQvVqBlZtOAJ4FDgG8BJwAfJhh5kswj8F7gAeA6MzsmxuFuBaab2RwzG2+RcQxmNsrMzgKOBq7Nso8LgcvN7Ogws1+yfI2ZzQZuAG5291WRMgcDd+ZbyTA5xh+BG81stpn1tbGZNYZt8H3gq/nuU0RkMJnSu4uIiMQWd+jgN4BNwKvcfSv0BV993P0J4ONmtivwKeCOYg7k7r1m9jbgywSBWzTY2hg+94ZIPQ4HfgK82t03J+tiZscDc4ArI71OCWAZcB1wfcqhxwGXmdklWar3oru/KfLzF4BTCeZ0TYsEW+3As8DxYbtIJevs5J0XzeHAnm78e5eWuzYig049WiIiIsWLG2i9Bvh9MrjJ4e8EwUfR3H0T8MXwkWvb+4HZaZ5/Asg7nbu7f6iAKibL9BL0rGXrXZNK19PDa278NQB3XJItzhYZXtSfJSIiEl/cOVq7AUvy3HYDMCnm8UREZJCoR0tERKR4cQOtRiJpyHPoAWpjHk9ERAZasktLkZaIiEjRYmcdJP9RJhqNIiIyBOjLWkREJL64gdYqgnWz8jEGWBPzeCJloQtPqUauLi0REZGixQ20XgYOynPb/cPtRYYcBVpSTTRyUEREJL64gdbPgGPN7EwzS51/1fc32szeB7wv3F5ERCqY1tESERGJL256958CbwB+BHzbzJYA28LXvmtmc4AZwETgV+y4RpVI5Wpu5vK/38sT29p5f3NzuWsjMujUoyUiIlK8WIGWuzvBYsQ/AN4MzAJGA3PDTbYQLNr7oLs/FudYIoOupoaN06ezur0NakqRN0ZEREREqkXcHi2gbxHgJ0qxL5FKEhn/Ws5qiAwqne0iIiLxlSTQEhmWurp4x8XfYf+ebmq+/e1y10Zk0GnooIiISPE0Hkokk+5uDrv+p5zwi19R091d7tqIDBp14IqIiMSXd4+WmcUOytw9EXcfIuWg606pRsE0XBERESlGXoGWmb1MkOgiFjN7xd1nx92PiIiIiIhIJcu3R+tMYGrKc0aQ3v1G4N4M5Qw4EDgVuI8gDbyIiFQwraMlIiISX16Blrv/Nd3zZvZT4N/u/ots5c3sLuBu4BsF11CkAuiyU6qRBg6KiIgUb1CSYYSB2n+BcwbjeCIiUrzkjQUFWiIiIsUbzKyDDwJvGMTjiZSMhlJJNdHZLiIiEt9grqO1CpgwiMcTiae5mSvuvJ25Hds4vqW53LURGXTq0RIRESleKQKtfG9+tgONJTieyOCoqWH17ruzeNtWqNGSc1KNFGqJiIgUK+7V43pgTJ7bjgI2xDyeiIgMMC1YLCIiEl/cHq35wF55brsX8HLM44kMnq4u3vqDq9i7pwu76Kvlro3IoNN6xSIiIsWL26N1C/BBMzs820bh6x8C/hDzeCKDp7ubI676ISdffR213d3lro3IoFHyFxERkfji9mh9H3gncJ+ZPQksAtoir7cCs4BXAfeH24uIyBCgDi0REZHixerRcvdud38rcAJB+vYaYEbkUQP8A3ifu7/V3Xti1ldERERERKTilSS9u7vfQjCMUGSY0lAqqR4620VEROJTzmqRPCgLm1QjDR0UEREpngItERHpJ3lfwRVqiYiIFE2Blkge1KEl1UQ9uCIiIvHFmqNlZl8jyCqYr4XufmGcY4oMmqYmrrr5Jl7q7ODYpqZy10Zk0GkdLRERkeLFTYYxkyC7YLb9vxpoAh4GemMeT2Tw1NayZP/9ebGjHautLXdtRAaRurRERETiihVoufspubYxsxHAtcAU4LQ4xxMZbLqhL9VIYZaIiEh8Az5Hy923AqcCBwJnDPTxREqmq4s3/+R63vfzX2JdXeWujcig040GERGR4g1KMgx37wBuA04cjOOJlER3N0d/93ucdtkPqOnWWttSPdSjJSIiEt9gZh1cCOw9iMcTEZEY1KMlIiJSvMEMtDYAYwbxeCIlozv8Up0UaomIiBRrMAOtFmBLqXdqZmPM7Dtm9oyZrTCzleFjrpn92Mwm5bGPg83sdjNbECm/zMweMbPTzCxtyjkz28PMXjCzPVOeXxTZT6bHp0rVBjIIFGlJFdHpLiIiEl/c9O6F2AV4uZQ7DAOg+4DbgcOB9e7Byi9mNho4BfinmR3g7u0Z9nEw8Hvg08B97t4ZPl8D7A5cAuwFfD6l3D7AnUBz+Iga7e5j4r9DEZHyUX+WiIhI8QalR8vMZgMnA/eUeNfHESyCPMfd1yWDLAB33+TuVwB3kT3b4RzgM+5+VzLICssn3H0ecBLw/mjPWNiDdTdwJvBCad+SVCLd4ZdqYhac8VqwWEREpHixerTM7FRg5yybtBIsanwMQTKMb8Q5Xhr7A3/Psc29wHuL3Ye7bzWzx4E9gVXh0wngRHf/p5mdn391ZahSoCXVROe7iIhIfHGHDp5EMCQwk80EAdYFwA+jPUYlMh14Osc2ywmCvUxGu3tbIftw95eAl/KqoQxdTU386Jc/Y2FXJ8c0NZW7NiKDTh1aIiIixYsVaLn7W0tVkSLVAr05tukhfkBZ8D7M7DyCnrRpQAPBNctWYC7wdXd/JEvZRqAx8tRIAHfHY4zlSZaPs49q4jU1zD/0UJ7v3MYxtbVqtxx0fhVmKLRXJdVvKLRXJSl1e6ndRUQKN5jJMKrJowS9bR8DFoULNmNmzcCbgN+Z2VvdfUGG8ucDF6U+2dbWRk1N8dPq3J22tqDzLjkHQzJzd3p7gzi+o6ODttpcHZ/VTedXYSq5vRJ95/022mrSJl0ddJXcXpWo1O2V3JeIiORvWAVakSQVR7r7i0Xu4zzg9e5+bLH1cPe3Z3h+G/AXM7sS+Djw/zLs4tvA9yM/jwSWtra20traWmy1+u5Itra26kIlD97VxRt/exN79HTT8rlzYrV9NdD5VZhKbq/a2iC4amxqrpjzvpLbqxKVur0SiUTsfYiIVJu4yTCuAa5x9//mse3BwBnu/r9xjplNmCVw15j7uLhE1cnmeYIsjJnq0An0zWdL/pE0s9h/MJP70IVKHrq7OeHr3wTgX58+S22WB51fhanU9krWxqyyeo8qtb0qVSnbS20uIlK4uOndTwdel+e27wDeF/N4qfKZO1UXbhdHKfYR1U6wgLOISMXSrBwREZHiDco6WqHdgVdKvM+lwOQc20wFFmd5faOZ5Robk2sffcxsFzP7TI7NmoFt+exPKoPu5UpVSfZeKNISEREp2mAtWHwocCJwW4l3/QxwRI5tjgi3K2ofZjYCOBiYl2edaoCP5thmDyBTIgwRkbLSjQUREZH4Ck1ZfghwFv3/Dn/MzDINH2wBZgCHEGTi+04xlcziVuA8M5sD/ABY7+EMYDMbRZD172jgwCz7uBD4o5n1APcm1/oysxqC+V7fBW5291VZ9hG1EKgxs08C17l7d/KFcJ+vAz4DHJnvmxQRKQd1aImIiBSv0GQYowkCp2igNTZ8Lp2tBAHW5cBvvcQLcbh7r5m9Dfgy8AAw3rbP2N0YPvcGd98KYGaHAz8BXu3um8N9PGFmxwNzgCvNLDl3KgEsA64Drs9SjQ0Ec66idToO+CZBENgQ2baXYKHjjxebFVHKw3SPX6pI8mxXoCUiIlK8ggItd78PuC/5s5klgMvd/UelrlgBddoEfDF85Nr2fmB2muefAIpK5+7ux6V5biFwUjH7ExEpN91WEBERiS/uOloLCBJSiAw/jY1cffUPWd7dzbsaG8tdG5FB5+rTEhERKVqsQMvdd+gdEhk26uqYe/ibeamzg6PqhtXa3iIiIiIywAYzvbuIiAwBmpMoIiISX96BlpkdYGYnm9kuA1khkYrR3c2hf7yVt932J6ynO/f2IsOMBg6KiIgUr5DxUA8BI4DHgUMBzOwBoJDAa4G7H17A9iLl09XFyRd8BYBHTju9zJURGTx96xUr0hIRESlaIYHW48Cbwn+TfgbsXMA+FhewrUjF0EAqERERESlE3oGWu78lzXM/L2ltRCqU5qyIiIiISCGUDENERPrRbQUREZH4FGiJiEhaWkdLRESkeAq0RESkn2SPlsIsERGR4pVkFVYzOx44nCAD4egsmy5094+W4pgig0lDqaSaaE6iiIhIfLECLTOrB+4B3kyQjXAR8HKWIso6KENHYyPXXXYpq3t6eGdTY7lrIzLo1KMlIiJSvLg9WucCrwcOd/d/lKA+IpWjro4njnwnr3R18s66knT+igwNGjsoIiISW9w5WscBNynIkuEqeZ2pgVRSTXS+i4iIxBc30NoNeKEUFRGpOD09HPTnv/CGe+6Fnt5y10Zk0KlDS0REpHhxx0ONAzaVoiIiFaezk//93OcBeOJk5XCR6rF95KBCLRERkWLF7dHaBIwtRUVEKpmGUomIiIhIIeIGWi8DM0pRERERERERkeEibqD1R+AYM9PCxzKsqUdLqonW0RIREYkvboB0GbAeuLgEdRERkQqiGVoiIiLFi5sM43yCRYrPNbMTgH8D2dKzLXT3C2MeU0REBpCW0RIREYkvbqA1ExgBJNfRmppje+XIliHJNJJKqojOdxERkfhiBVrufkqJ6iFSeRoa+Nk3v8763h6OaGgod21EBp2rS0tERKRocXu0RIav+nr+ddx7WNrdxdvqFWhJNVKkJSIiUixlCxTJInmZqZFUUk10vouIiMSnHi2RTHp62P+BfzC1pwdm7lru2ogMOvVniYiIFC9WoGVmpxEkxChUL7AYuMfdl8Wpg8iA6ezkM//3aQCeef8Hy1wZkcGTXEdLgZaIiEjx4vZonQgcArQCPcAKIBF53YDp4b/Lw20gGLI4Eeg1s2Pc/f6Y9RAZUBpKJSIiIiKFiDtH6zyCa9AzgRZ339ndd4k8ZhEEVH8EngNmh8/vDIwHHgO+FbMOIiIiIiIiFSVuoHU+8IC7X+vuPek2cPf1wEeB1wL/G3m+HbgT2CdmHUQGnNYVkmqi011ERCS+uIHW/sCjuTZy923An4APp7zUDoyMWQcRERkAWkdLRESkeHEDrV2BdXluuwDYO+bxRMpE9/ileiR7cF3pMERERIpWinW0Erk3AWA9MLYExxMZdAqzpJrofBcREYkvbtbBHqA+z21ryD8oEym/hgZ+9eXz2Zzo5fCGhnLXRmTQqT9LRESkeHEDrYXAlDy3nQwsSnlON06lctXXc9+JH2JVTzdvqc/3foLIcKCvZhERkbjiDh18DjjazLLux8xqgaOBZ1NemgFsLPbgZjbGzL5jZs+Y2QozWxk+5prZj81sUh77ONjMbjezBZHyy8zsETM7Lax7unJ7mNkLZrZnyvNmZieY2UNmtjiyz0Vm9lczO7zY9yvlo8tOqSY630VEROKL26N1EfA4cLeZXQksAbZEXh8BzATOAvYCTk6+YGYHA8cBDxdz4DAAug+4HTgcWO8e5Mgys9HAKcA/zeyAMJV8un0cDPwe+DRwn7t3hs/XALsDl4T1/nxKuX0IUtM3h4+ozwDvBT4FPOvuvWGZBuB/gB+a2fnu/qdi3rcMot5e9nrkUSb29sCs2eWujcig09BBERGR4sUKtNz9aTM7EvgeQcCT7u+yAXOBo9z9KQAzS6aFXwicW+ThjwMWuvucNPXaBFxhZrsBZwCXZdjHHOAz7n5XSvkEMM/MTgLmmtl33X1VWPc9gbsJ1gQ7v98bNasDvgi82t1XpuyzC3jAzD4K/JQg3b1Uso4Ozvv4aQC88O73wqjR5a2PyCBJ9mgp0BIRESle3B4t3P0+4FVmNgaYBUSvRrcAr7j7hpRizxGken8pDGqKsT/w9xzb3EvQu1TUPtx9q5k9DuwJrAqfTgAnuvs/zez8lCIzgOWpQVbKPv9rZlPMrC7TIs8iImWlsYMiIiKxxQ60ktx9I/BkntsmgHkxDzkdeDrHNssJhi5mMtrd2wrZh7u/BLyUpU4rcuwPYA1BcpCleWwrFcBMV55ShbRisYiISNFKFmiVQS3Qm2ObHkqTwj7ffeRTp5z7NLNGoDHy1EgAd8djXPgky8fZRzVx9+039tVuOen8Kkwlt5eFVXKomPpVcntVolK3l9pdRKRwQznQGs7OJ0g00k9bWxs1NcUninR32tqCDjz10OTmbW2MCv/fsa29r+0kPZ1fhank9urpCUY1d3R2Vsx5X8ntVYlK3V6Vch6IiAwlJQm0zKyJYB7TLPrP0Uq1LJzTVXKRJBVHuvuLRe7jPOD17n5sCet1O/Avd7+4gGLfBr4f+XkksLS1tZXW1tai65K8I9na2qoLlTxE7982N7fEavtqoPOrMJXcXnXrgz8NjQ0NFXPeV3J7VaJSt1ciUex0ahGR6hU70DKzU4FvAhMIplA7O06lTj73CrBb3GOm4+7zgF1j7qOQYCjffRYctIVp5juTPyf/SJpZ7D+YyX3oQiUP0TZSm+VF51dhKrW9apJf4RVWt0ptr0pVyvZSm4uIFC7WgsVm9hbgOuCvwGuAgwgCqvcA9QRrTL0bmE/QS1PKxYjymTtVF24XRyH7yHc+VynqJQOtvp7fnPNZfvK5s6G+vty1ERl0mpUjIiJSvLg9WucDj7r7RwDMbFr4fG+4UG8vcKeZPUeQZfAB4J6Yx0xaSpC5L5upwOIsr280s9YcmQdz7aPQOkHQ+5cxBbxUiIYG7vzEKazr7eHNDQ3lro2IiIiIDCGxerSAPQjWqsrK3RcCfwY+GfN4Uc8AR+TY5ohwu6L2YWYjgIPJPxX9UmCKmU3Jss+DgJVaQ2to0B19qUYaJCYiIhJf3EBrBvn3zDwLHBrzeFG3AtPNbI6ZjbfIAHIzG2VmZwFHA9dm2ceFwOVmdnSYUj1ZvsbMZgM3ADe7+6qMe4gIg6dLgJvM7EAzq43ss97M3gj8CvhK/m9Tyqa3l12feZY9nn0O69VEcKk+rlsNIiIiRYs7dNCAfK9A1xAMmSsJd+81s7cBXyYYkhgNtjaGz73B3bcCmNnhwE+AV7v75nAfT5jZ8cAc4EozawnLJ4BlBPPPrs9SjQ1Ae8pzVxIscvwjYGczS7ZxJ8FCx2e5+9+Lec8yyDo6+PqHTwbg5TXvgpEjy1whkcGR/CbV0kkiIiLFixtotQEtObcKdBO/B60fd98EfDF85Nr2ftIk43D3J4Ci0rm7+3FpnnPg5vAhIjIEafCgiIhIXHEDn1XAtMjPW8J/0y28MgLYGvN4ImWhy04RERERKUTcQOt+4D1m1goQDslbS5DmPdVBwIKYxxMRkQGmGwsiIiLxxR06eAXwAeBZM/umu18HXAOca2bdwGMEwdybw+0+HfN4ImWhC0+pRpqiJSIiUrxYgZa7P2tmbyJI275X+PQ3CIKrTwNjwufWAOcBV8c5nki5KNCSapI83xVoiYiIFC9ujxbu/hRwRuTnToJMgF82szFAIpnlT0REKp9uLIiIiMQXO9DKxt03DuT+RQZUfT03/98ZdHiCw+obyl0bkUGndbRERESKN6CBlsiQ1tDA7z95JpsTvRzWoEBLqojGDoqIiMRW0nWtRIYr01gqqSKmwYMiIiKx5d2jZWbvpP+aWcVY6u73xNyHyOBIJJg2/2XGJHqx2Xvl3l5kmFGHloiISPEKGTp4LTA98nMxtzznA3sUUU5k8G3bxvePOwGAxWvXQMuIMldIZHBo5KCIiEh8hQwdPAy4neBv8J+Ame5eU+BDQZaIiIiIiAx7eQda7r7U3Y8D3gscBMw1s7PMTPO8ZNjTjBURERERKUTBQZK73w7sQzCU8PvAf8zsVSWul4iIlIluLIiIiMRXVG+Uu291988DhwAJ4FEz+66ZtZS0diIVQlnYpBppHS0REZHixRr25+5PAf8DnA2cRjCc8KhSVExERMpDyTBERETiiz2/ygM/JhhO+B/gT2Z2k5lNiF07kQqh/iypJqaF40RERGIrJL17Vu6+AviQmb0IfAVYC3yqVPsXGXT19dx2ykfodnhdQ325ayMy6FxdWiIiIkUrWaBlZmOB7wCnAg8Bl5Zq3yJl0dDAL875HNs8wesaGspdGxEREREZQkoSaJnZSQQZCOuA04GfuuteqAwfGkgl1UTnu4iISHyx5miZ2Wwz+yvwK+AvwF7ufr2CLBkWEgkmLFvOxGXLIZEod21EBp2+yEVERIpXVI+WmdUDXwK+DCwB3u7u95WyYiJlt20b17zrGABWrFsLzVq9QKrD9qyDCrVERESKVXCgZWZvJFiseFfgEuBb7t5R6oqJVBYNphIRERGR/OU9dNDMxpnZT4D7gdXAge5+oYIsERERERGR/grp0XoY2C38/27APUWstfKyu7+l0EIi5ab+LKkmWkdLREQkvkICrW8CO8c83uKY5UXKQtedUo2U1khERKR4eQda7v7zAayHiIhUiO3JMERERKRYsdK7i4jI8KMOXBERkfhKsmCxyLBUV8edH3w/CeDQOn1UpPqoR0tERKR4unoUyaSxkWu+fB7d7hza2Fju2oiUgUItERGRYmnooEgeTIOppIrobBcREYlPPVoimbgzct0GenGlX5OqpLNeRESkeAq0RDJpb+fGt7wNgDXr14OGD0qVSPbgKtASEREpnoYOiohIfxo7KCIiEpsCLRERSU9dWiIiIkVToCWSB9MdfqkiOt1FRETiGzKBlpmNMbPvmNkzZrbCzFaGj7lm9mMzm5THPg42s9vNbEGk/DIze8TMTjOz2jRldjezX5vZS5Eyy83sv2b2JTNrTNn+42bWFtk23eMlM6svZfuIiJSaOrRERESKNyQCrTAAug/YChwOTHX3ye4+Gfgf4AXgn2bWkmUfBwO/B64G9o6UnwF8BDgGuCSlzPTwuHcAB0bKTAPeA+wG3JhyqNHApcltMzx2d/fueK0ig0l3+KWaJM93V6glIiJStCERaAHHAQvdfY67r3Pfnmvb3Te5+xXAXcAZWfYxB/iMu9/l7p2R8gl3nwecBLw/pWfsPOC77v5rd2+PlHF3XwKcCcw2s4NK8i6lYmkdLakmOttFRETiGyrp3fcH/p5jm3uB9xa7D3ffamaPA3sCqyJlrs5SJmFmfwu3eyJH/WSoqavjr8ceA8DBdUPloyJSOurPEhERKd5QuXqcDjydY5vlwMwsr49297YC9zEdWBHzuDJUNTZy2de/igM3ag0tqSrq0xIREYlrqARatUBvjm16iP9+UvdR7HFfZWa/AQ4CxoTPOUHQdgvwvehQxFRhgo3olf1IAHcnMmqyYMnycfZRTdy3z1BRu+Wm86swldxeFp75lVS/Sm6vSlTq9lK7i4gUbqgEWkPJfODDwHeAs4G17u5mZsBU4GvAZWSfT3Y+cFHqk21tbdTUFD+tzt1paws69Uz5ynPyRILG9m0AtG9to6FOiSKz0flVmEpur67u7r5/k3Ust0pur0pU6vaqlPNARGQoGZKBlpntCdwNHOnuLxa5j/OA17v7sQWUORk4190zJr9w9zsIshSmPu/AMjP7JLDEzM5y964Mu/k28P3IzyOBpa2trbS2tuZb3XR1A6C1tVUXKnnwtjZu/Z83ArBhw/pYbV8NdH4VppLbq2HLRgDq6+sr5ryv5PaqRKVur0QiEXsfIiLVZkgGWmGWwF1j7uPiIsrcANwQ87idZrYQmAWkDRLDrIh9mRGTfyTNLPYfzOQ+dKGSW3SgjNosPzq/ClOp7bW9PpVVt0ptr0pVyvZSm4uIFG6opHfPZ/5VXbhdHKn7GKjjtgMZ1/wSEakMmpcjIiJSrKESaC0FJufYZiqwOMvrG80s1xiY1H0UfFwzO8/MpuQo0wxsy7GNlJkuMaVaqe9CREQkvqESaD0DHJFjmyPC7Yrah5mNAA4G5hVQpgZ4S8px9wUOyVKmHtgZWJilrlIB+g0d1KWnVCHdbBARESneUAm0bgWmm9kcMxtvkcHiZjbKzM4CjgauzbKPC4HLzezoMH16snyNmc0mmHt1s7uvipS5GDjXzE4ys5ZIGTOzaQSLGS9w9+hixbcAF4b77MfMRgPfA+4O52HJEKEwS6pJ8saCAi0REZHiDYlAy917gbcRDLl7AFhuZivNbCXwCLAf8AZ33wpgZoeb2XwzGxXZxxPA8QRp1Z+PlF8K/IYgi+EXU467DHgrcAzwVKTMcuBOYAFwUkqZPwI/Bv5gZn31NLMVwGME87POLmX7iIiUkm4siIiIxDdksg66+yaCQOiLeWx7P7BDj1IYbOWdzj0sk1wXq5AyPwV+WkgZqUC1tTz49mDk6Ktqa8tcGZHBpx4tERGR4g2ZQEtksHlTE9+69BIAftfUVObaiAyiZJeWIi0REZGiDYmhgyLlkFzwU6TaaOigiIhIfAq0RPKgtTqlGrm6tERERIqmoYMimWzdyt0HBpn62zZthFGjy1sfkUGikYMiIiLxqUdLJA9aR0uqi853ERGRuBRoiWSgu/kiIiIiUiwFWiIZKNCSaqX+LBERkfgUaInkQReeUo10s0FERKR4CrREMtBFplQrJcMQERGJT4GWSEbbLzPVoyXVRMsZiIiIxKf07lKV1nR1Mb6+nppsV5S1tTzyxsMAOKCudpBqJlI5tGi3iIhI8RRoSdV5YON6Ll78Cm8fO55zZszKuJ03NnHRVVcAcEtT0yDVTkRERESGAw0dlKpzw6rlAPx1w7oCSmkslVQPrRsnIiISnwItqTr5joaKbqbLTqlGGjgY6EokuGvdGlZ0dpa7KiIiMoRo6KBIJlu3cstr3xD8f/VqGDmyvPURGSTKOtjfzWtW8atVy6kB7jzg4HJXR0REhggFWlJ1Crl4bOroAKBrYKoiUjUS7ly0cD4jamr5wsxdqB1CqQ2fbtsCQCLGPnrdh9R7FhGR+DR0UCrKjauW86WX59GViHNJk122QMvdWdfdlXM7kWqyqquTRR3bYu1jTXcXj23ZzAObNvTNkxwyYsZH89q3csJzT3LLmlWlqY+IiAwJCrSkotywagVPb23jgY3rB+wYniWE+s3qlZz8/DPctnZ11u1EhrPUjpdTXniWM1+cy6aenqL32Rv5OD2/dWvR+ylGR6KXee1by5au/sJX5tORSHDtiqWDetyE0vOLiJSVAi2pSBt6evjHxvV0DmDPVjq/Cu+0X718Sb/nNeBHqpG79wtOVnYVnwwietHf7YP7uf7iyy/y2fkvcF+RN3Di/KFc393N5t7iA9RiPbx5Ix9f9DL/3LRh0I8tIiIBBVpScomUi7Ni/GzlMr69+BWuSQl4SqGYrIMi1SSaDCMaEtXmecthdVcX7b29/Z7rJRpoDe6n66Vt7QDcs37toB4X4KlwflfSL1cuy7p9ZyLB0nBuaKE2dHfTG7btnEUL2OYJvrn4laL2JSIi8SnQkliWd3bQE7lo6nXnky/O5Qsvv1iSYTqFrXWVn2JqZZrELlUkuo5W9PNdk8fHYGVXJx974Rk+/sKz/Z7v36PV/1PYnUjwyrb2AR/aN3drW18g0pVIcM/6tazpGthUN70p3zi/Wb0y6/bnzH+B0198ri8BB0Bbbw+/XrWC5WF6+bbeHs5+6Xlujuzrua1tnPj803xt4cslrL2IiMShQEuK9q9NGzl13nNcvHhB33NLOjtY1NnBc+1tsTJ0JQ3EHIO8515ZDU8f8mqePuTVUKOPilQfJzXQyh1pPb5lM8AOw+Wic7S6U4YEf2fJK3zypee5c4B7nHqBn60IepRuWr2Sy5Yu4uz5z/e9/uzWNlZ3deHuLO3s6Av8aooYPLyko4Nz57/AY5s3FVRuQZh0JDpP9cqli/nVquWc+/ILAPxxzSpe2tbO9ZHesdvWrgbgkS2FHU9ERAaO0rtL0W5dG2TQ+uemjX3PRQOjRAnSGZdyJsfGnm6+vvBl1nR3Z9ym3qzvbrs3N/Ol668F4I7m5hLWRGToiAZa+XyaezPcHIn27PS4c9e6NTTW1HDE2PE8FH6H3Lx6JceMnxCnujn9Ye0qTps6nf9sDo65MUzw8VL7Vr7w8jwAPjhxMjetXsnJk6Zw0qSp/ZKDvNi+lT1aRuQ8zsWLF4RBU3GJP5pravv+nwxek3XtSDN3Vcl7REQqj27TS9HG1tXv8Fwiw/8rwQ2rVjC3Pf1FT687W3t7aVTPlUi/gKq3gEDrljWr+EuGXqnoflZ3d3HlssVcumRhv+dTh9kNpNSA8NmtbX3/vykcknfDqhU7lJuT59C8DT2Zb+jko7l2+3dRVyR5iLuzYNuOqfaVYFBEpPKoR0uKFg20etypM9uhR6uSpE7OjzpvwYs8u7Wt34VkZdVeZPClDh3MdvNkVVfnDunL3b1vfmMi8omKfraiQ+TWdnezqquTSQ2Ncaqdl56U76ds7y36vbClt4e23h5aa0v/5zMa/EV7tKJz2u7ZsI6ntvZPsPGjZYv5Z9hDl6o27bMiIjIYdPu+ynxz5VI+MPepvqEohehKJDhvwYv8OrzLO6J2+5/wZZ1BlqzopUuperReCNe/uW3t6r55CMXIdjc+eTe736XX1q389vC38dvD34YN8ro/IuW0Peug05PSm5LUnUhw9bIlPBLOQdqS5kZGNEDozXDn4rtLFvb7+ZSUJBrJY/1s5TLmhtkD43qxfesOCTmyJeKIJgfpduf9zz3FM5FkFY9u3sT8EtQtejOoKUPv+u9Skmn8Z/NG/rRuTcZ91pn+zIuIlIu+gatMeyJBW28vq1LWw+l1zzi3IulfmzbyVNuWvrWmotsnh7Ik+l1Y5d8n9HTbFn6yPP1inp+b/wJ/Xr+Wq5cv4erlS2gbtDVpnNEbNjJ6w0atoyXVJXLC98sqGtnkrvVruW3dai5aOJ8N3d3cleZi/xPznu1LVV7I90GqO9at4fdrVvHVlYUt+Lulp4cNaeZkfmb+C6zu7p9tcGOBizHfEH4PLu3o4MKF8znrpedzlMitLRJoZUrAkTo/K9dQxnplTBURKRsFWlUm+Sf3ymWL+xYD7k4kOG3es5w7/4W+7bb29u5whzf6k7v3uyO8LrxoiV4CfOyFZ/hunmu4fGnBi/whTK6Rzt8iw4u6EsVdsBV6uTHYiyWLVBzvH2hFvxNWRG7WfGnBi9ydZm7Wuu5uvr90IVBYoJX63bO0s7h1pT4w9ylOfP7pvLbN9P2TLoCMWtaVvm5WxO2ZNZHgLznUMjX9fEci8xBoERGpLAq0qkw0dFjb3cXqri4e3LSBlV1dzNvWTq87yzo7OOG5J/nGogX9yjZHhrJ0JBJ0R4YUdYb/j15MdSQS/QKkOHaqb+j7f9F3xgu87lkUWTRU62hJNcm0jtY/Nm3gnPkvsKqrs18wtCRLIJTspUkUMOtxa0owUcwtj0K+J7LNJ71y2WI2pelFT7ZRtK2ibZIrC6C7881FL3PVssV9z0WD12T9b0kJANsLvAFUSLuLiEhpKdCqYl0JD3qdInMkusO0ywD/SplcHU3Vfs7L8/otJtwd9jKlu7gpRVKMcXXbJ54Xe+GQ7g7zj5YtZnWGBUu/lWdvnMhw5fT/TN+8ZhXPt2/lqmWL8/4UJj//meZopfP+556iq4ge5UUd2/j4C8/w1/Xr+HlkjalcfpZj23TDDxd1BsOl+2VozPN431q0gD+uXc1DmzZyZ6THLDqkO/nuNxU4pDGV+uVFRMpHWQerWLohKN2JBPUpk6d73elMJPpdcC3s6J9eONmjlTrBHILhMI9v2cwbRo9lVF1xp1x0Qnd3kUMH0/nTujVsjnkhIzLcbE+Gkf4zvamnJ+/MgMkL/UJ7old0dbJzU7B+XbabNcs7OxlVV4thnPniXIC+4Yr5unlN5mHLAJvSpGrf2NPDn9etZULD9uyrXYkEdbW58/w9uGkDD27a0Pdzwp0as37DlZPttS3mEOZsST5ERGRgKdCqYueEi3NG9bhTX7P9Hm17by/fXryAx7Zs5n+nTM+4r+Td53QXU19dOJ+FHR3cv3E939ltz6LqGh2mmO7CLx+ZBv/NbW/L8IpIdcq0jlaSk/8FfHIIXbY1sqILhaffR3qrujo5dd6zGNAwgMN7OzPU7Ypli/jGLrv3/Vzsd1OCYHhJtHwyuIw7J0s9WiIi5aNAS/rpdqch0nv0wblP9c3R+GmW4TXJHq3UtWkAFoZznZ7ZumNAs7a7i8/P3zHgS1ev7f8PjvXvTRuZ297GByZM5om2zRw6akzGlMjZrE0zLAjAa4wX990HgD20kLFUob9vXL9DljsIgoD8hw5uL5NJugAletxMw4WfDxcgdzIHQwMtGogWM9wRgiHMZ02bmXbNsmKS8lTyeoYiItVEgVaVyXUXutsTNESCiugf/nRBVF+58Goq2zbp/HzlMlZ1p58j1X//O/ZofW1RkNY4Oezn3eMn8KGJUxhdV9dvPllSpvvdmWrc1dTEZ379S2qAO5ubc9ZRZDj6d5qFcBd0bMs7t0xHX293YcftF2BkKDtyABYNLlQ00NrY082EhoYsW6d39/q1vHPcTv1T6ccYOtgvU2TBpUVEpFR0m176eWTzpqLugCYvivINtF7Z1s53Fr/CM235DdvLJ+D707o1nPT803zllZfSvq68gSL5yWcU3ssp8zQz2dzbw30b1vHb1SsKqsNFC+f39RDdF8lemrpocrlFv4/Onv8CD0XmXhWiK5HoP3SQ5NDBwt9jdD+vHz2mqPqIiEh85b8dmCczGwNcALwL2Int183rgQeAr7p71hnNZnYwcBGwH9ASPt0LLAOuBX7m7r0pZXYH5gCvAUaGTyeAlcBNwOXu3plSZgrwVeBNwJiwrg6sAe4CvuXum/N974Pp2hVLi5rr0NU3dDD7RcH67m5+t3olt61bXdD+oxda3TmO8WTblr7/97rz6OZN7NkyoqDjiUjpXBrJbJqvjkSCO9at4e8pS0Qk5zPB9iHL5dSVUofLlixkz+YRbCgwyU6dWb/vz94Yc7QuXrx9aY4vTJ9VcHkRESmNIdGjZWa1wH3AVuBwYKq7T3b3ycD/AC8A/zSzliz7OBj4PXA1sHek/AzgI8AxwCUpZaaHx70DODBSZhrwHmA34MaUMq3AQ8AzwKHuPiUsMxU4AugG7jWzim37rhg9Wrnuvp70/NMFB1mpCsk6ePf6tcxZ9DJnzX++4LWwGrd18PN3vZufvuvd0N5eaDVFhqxiFtsdCNetWMr8bf0/e93ubO3t5fa1qzMuzTCYtvX2D4TaEwnOefmFHbb79LSZWfeToP8wxOTXXDE9Wo9t2X4fL90wahERGRwVe7Gf4jhgobvPcfd1Hhk74u6b3P0Kgp6iM7LsYw7wGXe/K9oD5e4Jd58HnAS838wmRcqcB3zX3X/t7u2RMu7uS4AzgdlmdlCkzJnAre5+lbtvSSmzxt3/H0Fv2HuKaIfYBmq8/ubeHu5Yt4ZrVywdoCNsl8/wxOSQo3+Gw3jWZUh4kZU7k5avYNLyFaAJ5SIVoccTXL50IT9eviRrgp7Bkm4B4XQJdnKNFEgdOviPTRtY1LEtdnr3GgVaIiJlM1QCrf2Bv+fY5t5wu6L24e5bgceBaP7xXGUSwN9SjluKug45Szs7+eGyxYNyrFxDBwHe8+wTLO3s6Bcf6XJDZOjrTjgPbdpY7mr02Zbn0L7U9QlTdbv3u4m0oquzb10wEREZmobKHK3pwNM5tlkOZBubMdrdc2VeSN3HdCDXDO5iyxyQY5sBMRz6ZToSCR5ImbeRzunznhuE2ogMP4VmDy1EDfHWdhrIuhVjW29+76bWLOt77/ZExb03ERGJZ6gEWrUESSuy6SH++0ndRzHHjV1XM2sEGiNPjYQg21a+i4SmE6dsJblp9UpW55ESPtXd69cWfUx31/DBHJLn53A5zwZaJbdX3Gx+7xg7nns2rEv7WkNNTVHzjpJ+MgjDk5PG1tXlTGrRnmePVq0FwVamrK6diUTGdh9VW8fm3sKSaySV6vyqxPNURKTSDZVAq9qcT5AdsZ+2tjZqYiyc6+4kegvPYFVpigmy4mpra1OglYO7B+0EBSceqUaV3F5bOzuKLrt7YxPvaGnNGGhZzI/Rg2nW9RooZ4yfyMWrlmfd5q8Z3meq7o6OrGP1t2zbRleG7+cZ9fUcPHosD2/dwrwCfzdtbW0lOb/a8lyKQ0REthuSgZaZ7QncDRzp7i8WuY/zgNe7+7EFlDkZONfdD8q58fYyhwM/AV5dQEr3bwPfj/w8Elja2tpKa2trvofegbtjtbUQ3hltqanhmj324SMvPFv0PqtFa2srjFCK+GySd7xbW1srLnCoRBXdXls2FV30NaPHMCbLZ6W5tpZtPTv23DSa0VlhNzPGlvAz39rcQp3V0Onpg6mahgYSGc6DcY2NfGjaDCZuWMe8pYsKO26Jzq9EBaxZJiIy1AzJQCvMErhrzH1cXESZG4AbCixzPzC7wDKdQF9mxOQfSTOL/QczWvr6vfajRikiMjNj0a7BabZzTU1+q7hWueQ5WnGBQ4Wq1PbqjhHwNNTU0FBTm/H11tpa1vfsmJXv27vuwQ+WLaKpppYX2rcWffxSaszyPgpVW2PUZvk137V+TcZ2H1NXX/R5Uqrzq9LOURGRoWCoZB3MZ/5VXbhdHKn7KOa4g1XX2MbU1fdbY2W/EcX3lg1Hnc1NnHnL7zjzlt9BS8Yl2kSGnXwye2ZSbzXsVF/Pbk3NaV8fVZf+63HvEa38eI99Oah1VEHHqythAHDIyP7HLuUaVLVY1lTrCzs6WN7Vmfa11toheU9URKTqDZVAaykwOcc2U4Fs+cU3hosJF7KPYo5biroOmNT7pfWRP/ydGhrS51WtIyndvWyRoaWYRcuT6sMelEt22zPt6+Pr6rOWj/b6/N/UGTmPt1N99v0VYs6s2bw6EujVlzDQcoJgqxht4XDvSllIWkRE8jNUAq1ngCNybHNEuF1R+zCzEcDBwLwCytQAb0k5binqOmBGpgyFid6xTb2bm49cJ1CuRTor1YcnTmGXDHfkRYa7rhg3XZLrRTVmSNxz6KjRTKxvyPjdER3OfOxOE3Mer9jhz9MbG3d4rsaMEbXbvyNL2VvW617U/hrMePf43O0gIiKVZ6gEWrcC081sjpmNt8hgcTMbZWZnAUcD12bZx4XA5WZ2dJg+PVm+xsxmE8y9utndV0XKXAyca2YnmVlLpIyZ2TTgamCBuz8RKXM1cKyZnWVmI1PKjDezrxH0aN1WeDPEd8ZOk9inZQT/b+fdgP6BVkttLSdPmlLQ/nJdju3SPDSH3M1qamZEZydXH/cBrj7uA9DeXu4qiQyabHO0dm5sylq2vib4TskUVLx5zDh+tMc+XLPHvjSm2WbfAocwF7P21A9335tr99g37WvRGpUy0ErgfW2Tr8kNDdy630HMaGraoW6pfrNPWZZmFBGRLIZEoOXuvcDbgGbgAWC5ma00s5XAI8B+wBvcfSsEmf7MbL6ZjYrs4wngeOAM4PlI+aXAbwiyGH4x5bjLgLcCxwBPRcosB+4EFgAnpZTZChwW1ulRM1sRKfMAwfpYR7jHmAQRw8T6ei7dbU9eP3rMji96MG8rnffmcWc5nVe3jsy9UQWIDhE6edIURtXV0WDGzgsWsPOCBUrtLlUl2xytY3J8F2QbbvfWMeOoDXuNpjc1pV1w8IDWkVw0azd+smf/QCjTH6veNJ/N9+00iX1bMgdsuza37JDc4U2jxwbHiTxd2h4tqLPt7+IdY8fnLOOekoQiS3UyfXeLiEj5DJkZtu6+iSAQ+mIe295Pmkx/YbCVdzr3sMx84MMFlllJENANKQ40Zxju856dJnLr2tVpX6szS3tXea+WETTEWPcLYP8RrTyzNf76Lbs1NfNyx7aMrzfW1NAdrmEzsb4heM6GxH0IkZLrTmS+sZDrU1Gf5XNzZsqcq0y9Ua8bNabv/ydNnMLfN67njaPHctOalTtsm24fDnxj19kc9+yTfc+9Zcw4/r5xfca6nTtjFtB/HlRdCb8DZjY19QtCp2foGTyodSRPtG0Bgl6wQhw6cjSPRFLzt8T8/hURkXj0LSx9gkArfQqIbJO4f7HX/nx9lx0z2FuOcvnWKa4PT5zCVXvsk3Wb6AVQ8kKxocBhPiLDRW+WT95rRo7OWjY6PO4rO/dfhWNkhoyD2Zw8eSrX77Uf4zKUzRSsNaV8l81ubuHiXffg+j3322Hb2c0tfTeFBqJH64yp05nc0NjveyZTRsNv7bpH3/9T+xUzBWdJc3aZzf9Omd738/en7Vx4ZUVEpGQUaEkfx2muTX9KZEtzPK6+Pu0wnZG1dbHTIydKMGRvZlP2ixPoP3F/TH1wQdegHi2pUp/Mku2voaamb5hd0mGRocjRHq3DRo8t2bIRmVKj79WSblHhHb83agwObB3J1DRJMKLfM+8cu1PffkuVdfDAEcEo9mjgls99nNSvv9nNLZw/cxcun71XxjJvHjOu7/8jSrgOmIiIFE5XktInU49WvVnOgCk6RPD9EyaxV8sIPjltxg7l3rfTpL7/ZxqmGJVu/kXUeTN34eAs6+4c3Dpqh4vCUWnWpIkOExwbznWIO+xRZKjKlsSm1nYMEloi3xvjU9Ktl2p6Y/S7ZFrD9mDpszN27LVJd8hs2QmjQ/T2bx3JT/fcj0t23aPfMb8wYxYX7bwbJ0yYlG4XXLfHvpwzPX0PUlP4XRINQrPV57Bw6ORxE3acD/emMePYM21wGRhXX8/HJk/llElTM2Z+FBGRwaFvYemnJU2gNbauPucQmlqzvrunJ06awmWz92JSQ+MOa1HNiPQu5dNjlCtjSHNNLW8e0z+Q+sYuu/f9/3Mzdt7hTvgeaRYfjk44H5cMtNSjJbKDOjNSp3C9Y9xOvHv8BM6eNnOH4W1ekgHA/QOTD0eyo46vq+eocTvlLp/lO6w3pYpTGhtpqKnZ4UbR60aP4dTI0Lyo6U1NvDHluygpGWhtS2xP/5Ht5tUXw16r43dKH9Tl8qGJU/jAxFzLOYqIyEAbMskwZOAcO34C/9y0kaPGTUi7aPH4+vp+i4hmcuM+B9Dj3m9uROrFTW0ecxSicg0dbKyp2SF72LTGRj4+eRpdiQTjw8QWUekm+o+JzP9oDdfRaaipYdXU4IJu0hBdD0yk1Grpn/zm/Jm7sN+I1pINEcx43MhHMBrMWZpkPOl7tDLLZ4hyPuFiU00tuzY1syAl8U6yZ2lJZ0ceewm+e7L1WomIyNCgQEv4v2kzOXPqDMyMzT09O7w+u7klr6QWjTU1pM5+SA2movtJN0fhvJm70Fpby1demQ/079H6+i6z+X/h80n1ZjtcQDVYTda7uU01NcxqaqLXt1/4TG9s4qOTptJcW9sXuNW2juCUu/8EwN1pesFEqsH4+np2aWrmsS2bgeAzHQ1s3hSZE5ROqdaxqE3pdf7Jnvv29RTt1twCG9blXT5VPnXMt19uZLqhyTXbF3HeEmY3jfZuiYjI8KRAS4DtQ+dG1dXx4YmTAWN2cwv3b1zPxyZPKzqpRWq56BDEdMHbm8eMY3VXV9/P0TvNB7eO4h1jx3NP5IKq1myHXrNcE9gTOFftHmQhvH/jev66YR0fmTSVUSlZzZTeXQTw/vOsasxyzp1MKZ7REWPGcd/G9XmtKRX9LqkxmNawvVfrqPET6HXn2hVL+x2z0WroDNcEy1blfN6P5/meo/Wc0djE/9t5t77nop3p7b07BlrJ3vRCHZ4j2BURkfLQlaTs4KOTp/HRyVN5/egxXLDzroyorc06vyGb1GBq56YmDhkZJK84LsOk8mhP17Hh4qivGTkKM+OwlMQWtWY7HKM+xwTwHvegnBlHjB3PxbvusUOQBUqGIdXtrGkzaa6p4bydd9lhPads6d9TvTZMBz82zWfsrOk7841dZvOpaTNz7if6aUx3Ayfd98lls/fs+3+2uWL5rFfVkiEIelXrSD4bSYIR/S65ds99+81L7YosBL01EmjNamrmE5On8YPZe+esRzpfDNcAExGRyqIeLRlQ0aDp0t32ZGZTMxfNms3qri4MuJolO5aJBE57tYzgN/sc0JcpMHW4YS1G9Jrr6PET+oYTZZLv3fimjk6uOPGjwQ+PPgbNzXmVExkOjho/gXeO24laMxKs6PdaprWr0jlhwiQmNTTwqjTZQRtrajg4x7pcSdGFhLNl7AP6urSmRuZyZatxlvWZOWvaTOa1b+23iHLUtyPrXgGcNmUaKzo7OHr8jhkDo/ND2yPzYUfU1PL+ApNXTG5oYGVXF7WwwzxVERGpDLplL3l79/gJHDJyFFfuvv2u6+tGZb9Iit55Ts5TqDNLu5ZNUjSYMmBMXX3GHrWpjY39hgR9bNLUjPtNDls8oHVk1jr31Rdnj+fmssdzcyFNkhCR4S75+U0dRlvI0MH6mhreOnY841LSvpeiXpkke6+iQ5XTfYLfEwZDp06ZlnFfR42fwOdmzMp7+PT4+gYu331v3j5ux+GQ3ZEerbdHhksWEyd9ddZsDh05mu9nWVNLRETKSz1akrdPRob33Lzvq3h480Zem+Eub1JP5A7u+Lr+F1rRi4vLZ+/FhDBDYM671aEb9z6AxpqafkOCsl0MXbfnvjy+ZXO/C5xsDs3x3kSqxeiUYX+FBFoDId87hP22S1PnM6ZO5wMTJ5c0CMympbaWtnDIYPSGTzH9UTs3NTNnl9klqpmIiAwE9WhJUUbU1vLWseMZkWPy9pru7YktxqZczCQDr1pg9+aWvouddNkI00nOhYjeqc623tfkhkaOHj8h77lXWuxTJJAaaBUydHAg5O7RCliOHi0zG7QgC4JeqGkNjXw9DJA+NnkqjWacMXXGoNVBREQGj3q0ZEAdPmYcN61eyeFjd8yKVV9Twx/3fRWWkjkwOhcj2+VcMsSLXvMVmx1RRDKb0tB/qO8+I1p3WCtqMBWTnKe8oWFg3xGt/GSv/fp+/tDEKbx/wmR9b4mIDFMKtGRATWho4Lf7Hpixp6k5TY9YdGHSbBdHybvV0aGD6oMSKb23jx3PE22b2X9EMNztlMnTGFtXzxtTsoAOlmI+5/ksSpyvj06ayi9XLeeTJeiJUpAlIjJ8KdCSAZdtOF86NVl6tNJdK0WHBCn7lkjp1dfU8OWdd+v7eURtLSdOmlK2+uTq0Rro3qsPT5rCu8bvxJi6wRt2KCIiQ48CLak42S6h0mUrHMjpIonx4zGzoiari0jlKHXeUAVZIiKSiwItqTj97lanBFHTGpv4xi6z+13kZFuINJYRI9j6yiu0trYWl39ZRAbVgSNG8tTWLbxz3E47vOZlTuAhIiLVR4GWVJzo/It0QVTqAqe6fBIRgG/uujtbenvS9jbpe0JERAabcgdIxSl0nlUpJ7mLSGXKJw17rVnGIX37jmgtdZVERESyUo+WVKQJ9fWs7+5mZlNzzm2LSfWcl23baD7qKKithbvvhubcdRGRgbFXywhOHrsTO48cmXvjiF/utT8ruzrZR4GWiIgMMgVaUpF+utf+9LrntWjwm0aP5ferV3LQyFGlrUQiQd1DD/X9X0TK69gx44I5kwWY0NDAhIaGAaqRiIhIZgq0pCLVmeWdFr65tpbr9txXqd1FREREpGJojpYMCwqyRERERKSSKNASEREREREpMQVaIiIiIiIiJaZAS0REREREpMSUDEMkC29pAUAzwERERESkEAq0RDIZMYK2lSuDdNJKtiEiIiIiBdDQQRERERERkRJToCUiIiIiIlJiCrREMunooPmEE+CYY6Cjo9y1EREREZEhRHO0RDLp7aXunnv6/i8iIiIiki/1aImIiIiIiJSYAi0REREREZESU6AlIiIiIiJSYgq0RERERERESkyBloiIiIiISIkp6+AQsnnz5ljl3Z22tjYSiQRmVqJaDV/e1sbo8P+bN29W5sEcdH4VRu1VGLVXYUrdXnH//oiIVCNz93LXQXIws2nA0nLXQ0REqt50d19W7kqIiAwFCrSGAAtuR04FtsTc1UiCgG16CfZVDdRehVF7FUbtVRi1V2EGor1GAstdFw4iInnR0MEhIPyjFvsOYmT4yBZ31ziQHNRehVF7FUbtVRi1V2EGqL3U7iIiBVAyDBERERERkRJToCUiIiIiIlJiCrSqSycwJ/xXclN7FUbtVRi1V2HUXoVRe4mIlJmSYYiIiIiIiJSYerRERERERERKTIGWiIiIiIhIiSnQEhERERERKTEFWsOcmY0xs++Y2TNmtsLMVoaPuWb2YzObVO46DhQzO9nMnkx53yvC936OmdWlbH+Emd1rZgsj2y8xswfN7HiLLEwTKXOwmd1uZgsiZZaZ2SNmdpqZ1Q7eOx4YZlZrZn80s/enPF/V7RW+/4fC+q9MaYPbzWyflO13N7Nfm9lLkW2Xm9l/zexLZtaY5hhTzOwaM3s+ch6vMLOnzexiMxs1eO84HjObZGbXmdkrKe31ipndaGYzUrYv+LvLzJrN7HwzeyJs22SZF8Nj7DZ477hwZtZqZnea2ekpzxf8uan2801EpCK4ux7D9AHUAo8DFwHjCZOfhK+NBj4DzAdayl3XAXjvhwPPAnukeW0ScDtwVuS59wJPA28A6iPP1wGvBh4EPp2yn4OBBcBRQGPk+RpgT+BW4NJyt0UJ2vKbBJnLTlF79dV5d2Ah8Nro5yp8rRb4APBi8n0C04HFwInRzxtgwAzgWuDmlP20Ai8DnwZGppSZAHwdeASoKXd75NlmfwG+AjSlPF8HfCL6Xor97grPoR8D01LKjAA+Gv4Oppa7LTK0z6jwc7MQ+Gzk+YI/Nzrf9NBDDz0q46Gsg8OYmZ0AfNjd35dlmx8Ar7j7ZYNXs4FnZpcAC9z9mgyv7wn80t1fG/78LHCiuz+dYftpBBcZM929N3zuDuAad/9ThjIjgLnAoe6+Ku57Kgczew/wVYL3/m93/3n4fFW3l5ldAODu38qyzX3AF9z9v2Z2FTDP3a/MsG0N8F/g4+7+RPjc54Ep7n5ulmPcDvzM3W8p/t0MPDMbTRCYz/IMf3TM7CHgdHd/vpjvLjM7BLia4PxJZChzDrCzu38m3jsqLTNrBv4O3EUQQG1098vD1wr+3FT7+SYiUik0dHB425/gj3c294bbDTf/Bv6a5fUlBHd2MbN6YKdMQQOAuy8DVhHcKU/K2r7uvpXgrvye+Ve7cpjZ7sAVwAnAtsjzai+YRXD3P5tbgeQFf673ngD+Rv/P4nD6/E4EVmQKskJLCT+TFPfe9wfuzxRkZShTKQz4vrt/Lc1rxXxuqv18ExGpCAq0hrfpwIoc2ywHZg5CXQaVu9/q7guybLIfwdAjgMnAmjx2m9pWo929rcAyQ0J4l/wPwNnunhpQqL2ggRwLwbr7le7+ZPhjMZ/F4fT5fQUYF/akZDKDYIgcVFl7uXu7u/8uw8vFfG6qqv1ERCqVAq3hrRbozbFND8EciaoRDmu7BvhB+FQ+7QTFtdWQa18zM4I5HHe6++1pNlF7BcaY2ZVh4oVocofnzOxaM5sa2baYz+Kw+fy6ew/BUNJvmtnY8BwDwMwazewjBL2EyUCrqturCKVoi2puPxGRAaFAS6qGBU4BngR+7u43l7dGFevTwBTg/5W7IhXuPOAe4DB3n+zukwna7TDgOeDPlpLZssp9A/g/YD2wNgxKVwHtwHXA+3MM+xMRERlSFGhVETPbM0wPvEe56zLYwvd8D3AG8E53vyLH9j80sx8WeIzzwsniQ5aZHQacS5CIoKeActXYXje5+5/cvT35hAc2hufXUuBN6QpasPTAE4UczMwON7P5QzHFtplNIMj0eTrQ6u7jw+B0EkG2vY8A55lZQ4byBX93mdnosL0Oj/8OKkcxn5tqO99ERCqF7rZWEXefB+xa7noMpnB9mS8DpwEXEmQazHnX3N0/Veix3P3iwmtYOcxsMvBrgmyCBWX9q8b2Al7I8fqzwG4ESQf6cfcbgBsKOZi73w/MLqRMBfkQcJu7/z71hTCZw+/N7LXA+4Eb02xT8HeXu29i6LZXRsV8bqrwfBMRqQgKtIa3fMbT14XbDTtm1koQOPQAB7j7xgyb5jvvoJi2GhLtGw5xuwm4zN3/mWPzqm+v0LYcr7cTrN8ExX0Wh9Pndy/gPzm2eQZ4DUGgVe3tVahStEU1t5+IyIBQoDW8LSXIEJfNVIKFLYejSwna4FM50kqvBHbKY3+pbbXRzFpzZAQbKu17GMHCqHuZ2XlpXh8NdIXrG70XtddWoCnHNs0EWdpg+2dxbZbtpxLMH0waTp/ffC7One1/k4p570sJsokWUmYoKOZzU+3nm4hIRdAcreHtGeCIHNscEW43rIRrQB0JnJsjyEpmRFtjZq/Ksr+pwCRgWeTprO0bpkg/GJiXf83Lw90fcPdWd5+UTOwQfRD0dn3M3Y9RewFBdrzdc2yzN9uz6OV67zXAW+j/WRxOn98FwD45ttmHIA08FPfenwHekiOF/FBpr6hiPjfVfr6JiFQEBVrD263AdDObY2bjU1IqjzKzs4CjCVJ5DzcHAX9391zDu5K+DPzKzN4QLsgLBHO8woDiJuBid4+mP74QuNzMjjazxkiZGjObTTAn4uZC5zsNEdXeXr8GPh4mDOj3PWpm9Wb2cYJA7MHw6YuBc83sJDNriWxr4XIDVwML3D2asOBq4FgzO8vMRqaUGW9mXyPoYbhtQN5had0IfNjM3hnOm+wTnjNHAicTtCsU8d3l7o8Di4Afm9m0lDItZnYy8DngkoF5iwOmmM9NtZ9vIiIVwXLc7JchzsxGE1wUHwWMB5IXHxuBB4CL3H1leWo3cMzs/4DvAtmG23QDr3X35WGZtwIXEFwgN0a2WQRcBvwxtXfMzA4C5hAMWUpe0CQIenKuA65PCTaGJDO7AviTu98bea6q28vMDga+RdATUx95qRP4N3BBdNHs8KL468AhQPJC1oFVwG+By929I+UYkwna680EwzctLLMOuBP4prtvLvmbGwBmdiBBALAf/durhyAd/lfc/dHI9gV/d5lZE0Ew9UGCHtVkmS3Ao8D/S7MAd0Uxs3OATe5+feS5gj831X6+iYhUAgVaIiIiIiIiJaahgyIiIiIiIiWmQEtERERERKTEFGiJiIiIiIiUmAItERERERGRElOgJSIiIiIiUmIKtEREREREREpMgZaIiIiIiEiJKdASEREREREpMQVaIiIiIiIiJVZX7gqIiIjkw8x+ASxx968M4jFrgKnhj5vdffNgHTtDfSYT/O1ud/f15ayLiIhkpx4t6cfMTjIzL+JxQbnrLuVlZkea2TYz+1UJ9znRzFaZ2QIzqy+i/AFmtsnMHixVnaSsdgZmDfIxPwcsCR/PDvKx+zGztwIrwrqsNbMJ5ayPiIhkpx4tSfU34NOApTw/AbgQ+AHwUppy9wxwvaTyHQo0AYeVcJ97ARPD/08BFkdfNLNTgL+4+4oM5V8FjCpxnaS6jCQIsM4Hlpe5Lv8E3gVMA34CjADWlLVGIiKSkQIt6Se8YP1h6vNmNpsg0LrF3e8f7HrJkPBn4DjgTyXc55PAP4B2YGma138GnAZcn6H8g8AjlLknQoa8de5+R7kr4e6dwJ/NbFa56yIiIrkp0BKRknD3R4CDSrzPzcCbc2yW2vsaLf8K8NpS1klEREQkH5qjJSIiIiIiUmIKtKTkzOxtZrbYzOrNbISZnWtmj5rZejP7Xcq2rWb2JTN7zMxWm1kiTK6xPizzZTNrzHKskWZ2sZn9N0x6kEzO0W5m883sMjPbKUPZCWb2YzN7Otw+WXatmf3bzD5nZgX3+lrgJDO718yWmll3pE7Pmtm1ZjYpS/kaMzvNzP5lZisj9eo2syVmdpOZHZChbKOZnR+23bqw3DYze8XMfmFm+5vZ28PkEjUpZT9hZv/I4/2lLR++9pKZHZnm+SlmdqOZLUuTSKUzbJePZDjez83sG5Gf9zCzDjPz8KnrUvb3kZTyfzOz0zPse5SZfcfMnjCzzZF9bA6f+46ZjcpQ9hNm9o/w931y+PtOnsPtZvaMmV1tZhPTlc8mTnuF5Q8zs9+Ev6fkud0TfiZuM7NXZyk738zeaWYfNbOnkm0dnk+3WjCMOJn85F9mtiV8fVN43n0ow37HWJDYZD8z+x8z+214PneG5VeF+zvDzGoLbbPIcd5kZn82s4Vm1hvuuzdsizvN7HXF7jvlOPuEdR5nZq8P30/y894dfhZuNbNXZdnHO8zsYTNrS/N7Xmdmd5jZXqWor4iIDD4NHZSBMB2YQZAh7A8EqZHvAe4mmMcDQHgx9Sfg9cCtwG3AJsCB0cA+wBzgSDN7k7s7ERYEYI+Fx/s18HtgS/jyWGBv4BTg9Wb2umh5C4KvuUB9WPYGgnlABowJy14KvN3Mjk49dg5fJZjPdj/wU2AD0A00E2RMOxE4wcz2dvdVacr/FPgYcAtBu60L26QZ2BM4HLjfzA509yWR92Th9q8HbgJuBzYCLQSJJN4E/Be4GdiF4EZLInLcmcCueby/aRnKA8wm+H30Cet1I8Hv8zpgdfh+kkYBbwF+aWbL3P1vKfucRf/vqsUECVuagCuB3wD/Cl9zgoQuUbsSnIv9mFkTwfkzg+Ac+B3bz5+R4Xv5NHC8me3v7ttSdjEz3OZXwPEE5/K1BMkJGsJjfpjgd72Pu69OrUM6cdvLzN4J3AHMB/4IrAQ6CM71qcC7gUfN7Ch3/0uaKuwGXADsH7bLr4Cu8P2eAjxgZmcSnJ+3E3ymNxB8bo4CfmNmde5+Q8p+xxAkNvkicDLwMEGbJ+s3HjgQuJrgXD0pj+bqx4LkKD8jOM9vIkhe0QvUEnwG3gb8y8xOdPffFrr/FBPDx3nAOQSf918Dqwg+F1OBo4HHzexd7t4vYVAYsN5JMI/wawTfP30vE5z3xwN3hN8V3THrKyIig83d9dAj54PggtKBw/PY9pRw23uBq4BRGbZ7fbjde7Ps6+3hNiekee0cggvAPbKUf1NY/uCU568gCOqmZil7ZFj2XQW0UyPBxfrlWbaZRHBhelWa1w4Oj/mxLOVHEQRQ56Y8f0Ku3xHwDqAt3K4u5bWvAksL+P3WpXnNgdNSnpsWPn9cln0a8DRwbZrX7gduyFBuh+Ol2WYh8I00z59LEADvk6XsXuE59oU0r301PP79wJgM5XciCLx2+F1nOWbc9rqHIAFIY4ay9WGdnwUsQ5uuByZlaI8EQfBySprXa4GHgCfTvDYr3Pdm4M1Z3tvHwu0OLfBcaCYI2m4CajNsU0MQmC/O1D4Zfs/3p3n+8LCey4D9MpStA/6arq2BL4fnRkOWYye/D16foS1n5Xte6aGHHnroMfgPDR2UgVQDnO2ZF/isJ+jluj3TDtw9eZHyxjQvvxm4w91fzFKHB4EvsWNa5sOBG909W7rmvwDPEQQn+Woh6Cn7XqYNPOjFuoH07+lNBD1YGdeiCtvzf9neixMt+4RnyQrpwV316zK9PkBmhP9m/D25uxOkz/5zpm0GwJuBu9x9bqYN3P0Fgt6hbAk5Pu7uGzOUXwv8guB8y1fc9toAfN2DDHXpynYT9ATuS9DLlM4vPE1va9gejxKco79M83ovQW/cvpZmaGnoMnd/IMNrEJz7awnO50LsRXAT43thPXbg7gmCz+aMcPtS+LK7p81q6e49BDd19iXosYuaASx0964s+/4vQW/X4izbiIhIhdLQQRlI14UXNmmFF1sPAJhZA8FaXekyyK0m/SKlu7DjMLHUYzjwnTQvzSJLMJMsa2YLMhw7U5kNhFnuwgvNiaT/nG3KsN9dCHqVMrZbeJzfpXl6FvldkD2dxzaltD78d0y2jdz9zoGvSj87E/SQ5PIKQe9mOis9yGyYzSJgFzOz8HzMJVZ7ufsHoW8I4liC4D9VR/jvLILALFW297SUoHcm0zm6lOCcn0AwjC5V6g2Cftw9YWaLCT4LhZgV/rsgx3bJ12cBTxV4jHT+neP1ReG/uxAEkEnryf07duCiomsmIiJlpUBLBtJzuTYws3cBlxDc8c3Ww5ruDvgogmFwxRgF1JjZ9BzbdRLM7chbOHn9coJejIyJPLLUK857SrfWVKpC5puVwkKC4VUXmtl5BBeb0Tp0A6vzDEJKaTTb52RlsyXcNp20PSdpyrcQDKvryWP7hcRoLzMbC3yLYH5YpnonZXq9PcPzANvyeB2CoXzp5NtmueqeKrl9azj/LpPkzZwJBe4/k1zvJ3mOpb6fB4HzzeyzBHO1UucAbs4yGkBERIYABVoykLJeJJjZPgQJBP5GEJisZcfkCgCfL3nNApeEj1zuy3eH4QXeXQQXw18AlpD+4vqdBIkWhj137zKzTxAMl/xvhs22mdlNwGfdfdPg1a7ylKC9riJIwnAZwTDW1At4CBI1XFOiKleaXD2MSR25NxlQfyYYwnlZ+NiBmS0FLnT3nw1mxUREpDQUaEk5nU7QA3O0Z8moFaaLztXzVIyrCOZh5ZKzZy7inQRDhPZw95cybWRmkwvY55Dn7veY2S4E2RxT33s9sAdBprutVEkAmk2x7WVmYwiyWv6vu2eci5dM0T5MvZfcvUw9pO8lHzRhj+TZZnYJwe9zRMomrQQB80/N7DkPFgQXEZEhRIGWlNOuBNnJcqUtznSebia4GClGGzDP3e8osnwmuwKbsgVZoYF4T5tilC3k2EV9b7j7VoJ06mmZ2UiCjHOFBFrtpJ+DlI8t5Pd+RxK07aAqsr2S85oezbH7Sv/uL6bNk0P07nP3YoffDjp3X0YwVHQHFqw7+GaClPwKtEREhhhlHZRy6iXHOWjBgsGZMr69Qpr1kVLKm5mdk6YH6RW2Z3fLVv5bZvajXNtF5HxPoSMyPP8KMDNLxrZkvU4ws0NTnl5IsNZRsRYCoy3DAr0RbyhkpxYsMHxqHpsuASaHSRzytZA8fo9Zys7KY7tdyH84Wmwx2yvZk5PrHMx0/pVdeO7PJH2bd5B53mNy+6zng5k1mdnzZpYu6+egMbMPZ1vMGPqyJC5jx15NEREZAhRoSTnNB15jZml7JMIg6wdkvsi4HzjazPbMcow3EqRznpby/D+Aj5hZxgn3ZjaBYHhjXgvNhuYDI83soAz7NDP7KHBchvL/IMgU97Es9RoF/IQd08M/ABxkZocXUN+ohwmSf3wuy7FPIEiyUIjXAteEi0RnsztBxsVCkmL8Ezg5HDJXqAeBo8LkJWmF59YxBL+XwRKnvV4hmOeYMR19eG5eGLuWA+dkgvXHHkzz2itkTh3/AsG6VJ/OEax/iCC1ez6JYwbSaQRrdGVkZvUENwPKXVcRESlCpQ8fkeHtR8BZwH/M7Ba2pz4eQ3BX+liCC6c7ST/E60fAGcB/zexGgrTNySFDYwkupt5FMPwqNanA1wguuF40s98QXMgkJ8c3E8wJex/BXI6fFvCe7iFY9+svZvYLgrvRPQTzLyYTLMA8E7gW+L/Uwu7+uJn9jGBexruBJwnSb3tYrz3YvlDq71OK30IQfP41fE/zCIYDpgYur0tXcXdfFs4X+aqZHQb8h+B30hzW/S3AbgTrcH0qn8YI3UPwe7nfzO4i6ImJ1qmOIGg4Ffh+AfuF4EL1A8C88D0vBm4Kh2PlciXBemTJ8+dltp8/rQTv9aSwvlcWWK84im4vd99iZtcAl5jZfsDzbO8FmggcQhCEfQ/44gC/j0zemya4NWAccABwPPBrd384TdmfA2cCd5jZ/cBt7j4PwN3bwyyN1wMHhq+vYXsv80jgQIKbHL/OIy3/QPsdcHX43fcIO2bAHEGwht8E4OZBrpuIiJRCuVdM1mNoPAgCl2XAnnls+zaCXqAxeWx7CEH2rRUEF5NOMDfjcYIFWVuAbxAsoJqufCtwMfAE24MKJ8i0toBgsdCdMpSdBFxNEBi1R8q2AS8RBHK7FdFWU4CfEdx97wn32U6wAO2VBEHckcDLGcrXENzt/hfBOkTJevWEv4PfAQdmKNsAnEcwR2d9pGy6R12a8kYQYD4QHivZlvOBHxIEie8I27YmTfn5wJFpnv8f4O/AxjT16CYIcr4JNKcp+3PgG1naexpBMDyXIDnER1Ne/ztweoayo4FLCQLa6PmzOXzuUmB0hrKnAv/I43zI2F5ZysRpr2aCHqtkxsFkmaXAbwkC7fEEn9G9M/wO35Wlbt8Efp7l9f3C83ZMyvOzcpyPqwmC+/8DarPs/70EN082A19J8/rhBMHqIoLeveT+1xAENGcDDQX8Lr4K3J/m+X3C9zkuR/kx4Xb7pfmsfZ7ge6ErTXtsDut7VJp9JttyVr7vQw899NBDj8F/mPtgL10jIuVkZqcQBIL17p7Puk4isZnZLIKbD29393vLXJ28mdlXgcPd/fAyV6VPpC13cfeF5a2NiIhkojlaIiIiIiIiJaZAS0REJLsmM5tVZNKVkjKz6QzMuoIiIlJiSoYhIiKSWTdBJshXCOa5FbucQGxmdgQQHXaZaw1CEREpIwVaItVnBcEaUoky10Oqy0aChBSFLJdQCX4MPBX+f3k5KwI8RJBJtY4gaU+56yMiIlkoGYaIiIiIiEiJaY6WiIiIiIhIiSnQEhERERERKTEFWiIiIiIiIiWmQEtERERERKTEFGiJiIiIiIiUmAItERERERGRElOgJSIiIiIiUmIKtEREREREREpMgZaIiIiIiEiJ/X+fhtIZiM4HhgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "tof_analysis = TimeOfFlightAnalysis(tuid=dh.get_latest_tuid())\n", "tof_analysis.run(playback_delay=149e-9).display_figs_mpl()" ] }, { "cell_type": "code", "execution_count": 10, "id": "66f63c90", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:33.443758Z", "iopub.status.busy": "2024-11-13T02:36:33.443562Z", "iopub.status.idle": "2024-11-13T02:36:33.447272Z", "shell.execute_reply": "2024-11-13T02:36:33.446699Z" } }, "outputs": [], "source": [ "fit_results = tof_analysis.quantities_of_interest\n", "nco_prop_delay = fit_results[\"nco_prop_delay\"]\n", "measured_tof = fit_results[\"tof\"]\n", "\n", "qubit.measure.acq_delay(\n", " closest_number_ceil(\n", " measured_tof * constants.SAMPLING_RATE, constants.MIN_TIME_BETWEEN_OPERATIONS\n", " )\n", " / constants.SAMPLING_RATE\n", ")" ] }, { "cell_type": "code", "execution_count": 11, "id": "7f10f167", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:33.449040Z", "iopub.status.busy": "2024-11-13T02:36:33.448875Z", "iopub.status.idle": "2024-11-13T02:36:33.454508Z", "shell.execute_reply": "2024-11-13T02:36:33.453901Z" } }, "outputs": [ { "data": { "text/plain": [ "'devices/device_2q_2024-11-13_02-36-33_UTC.json'" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.to_json_file(\"devices/\")" ] }, { "cell_type": "markdown", "id": "6ad31577", "metadata": {}, "source": [ "# Resonator Spectroscopy\n", "\n", "Here we go through resonator discovery and punchout spectroscopy for identifying the resonator and measuring it's resonant frequency." ] }, { "cell_type": "markdown", "id": "e9c3f17b", "metadata": { "lines_to_next_cell": 0, "title": "BODY" }, "source": [ "## Resonator Spectroscopy" ] }, { "cell_type": "code", "execution_count": 12, "id": "e09ddff6", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:33.456373Z", "iopub.status.busy": "2024-11-13T02:36:33.456207Z", "iopub.status.idle": "2024-11-13T02:36:33.461536Z", "shell.execute_reply": "2024-11-13T02:36:33.460925Z" }, "lines_to_next_cell": 0 }, "outputs": [], "source": [ "def resonator_spectroscopy_schedule(\n", " qubit, # noqa: ANN001\n", " freqs: np.array,\n", " repetitions: int = 1,\n", ") -> Schedule:\n", " \"\"\"Schedule to sweep the resonator frequency.\"\"\"\n", " sched = Schedule(\"schedule\", repetitions=repetitions)\n", " for i, freq in enumerate(freqs):\n", " sched.add(\n", " Measure(\n", " qubit.name,\n", " acq_index=i,\n", " freq=freq,\n", " )\n", " )\n", " sched.add(IdlePulse(8e-9))\n", " return sched\n", "\n", "\n", "freqs = ManualParameter(name=\"freq\", unit=\"Hz\", label=\"Frequency\")\n", "freqs.batched = True\n", "freqs.batch_size = 100\n", "\n", "spec_sched_kwargs = dict(\n", " qubit=qubit,\n", " freqs=freqs,\n", ")\n", "gettable = ScheduleGettable(\n", " quantum_device,\n", " schedule_function=resonator_spectroscopy_schedule,\n", " schedule_kwargs=spec_sched_kwargs,\n", " real_imag=False,\n", " batched=True,\n", ")\n", "\n", "meas_ctrl.gettables(gettable)" ] }, { "cell_type": "code", "execution_count": 13, "id": "d42c519c", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:33.463260Z", "iopub.status.busy": "2024-11-13T02:36:33.463097Z", "iopub.status.idle": "2024-11-13T02:36:34.118808Z", "shell.execute_reply": "2024-11-13T02:36:34.118093Z" }, "lines_to_next_cell": 2 }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t freq \n", "Batch size limit: 100\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "901e1d6147d04e0d92c5bc2b0fad7572", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n", "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 7kB\n",
       "Dimensions:  (dim_0: 300)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 2kB 7.68e+09 7.68e+09 ... 7.72e+09 7.72e+09\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y1       (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "Attributes:\n",
       "    tuid:                             20241113-023633-465-576657\n",
       "    name:                             resonator spectroscopy\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 7kB\n", "Dimensions: (dim_0: 300)\n", "Coordinates:\n", " x0 (dim_0) float64 2kB 7.68e+09 7.68e+09 ... 7.72e+09 7.72e+09\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan\n", " y1 (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan\n", "Attributes:\n", " tuid: 20241113-023633-465-576657\n", " name: resonator spectroscopy\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.cfg_sched_repetitions(400)\n", "\n", "center = 7.7e9\n", "frequency_setpoints = np.linspace(center - 20e6, center + 20e6, 300)\n", "meas_ctrl.settables(freqs)\n", "meas_ctrl.setpoints(frequency_setpoints)\n", "\n", "rs_ds = meas_ctrl.run(\"resonator spectroscopy\")\n", "rs_ds" ] }, { "cell_type": "code", "execution_count": 14, "id": "2f1c34a7", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:34.120965Z", "iopub.status.busy": "2024-11-13T02:36:34.120765Z", "iopub.status.idle": "2024-11-13T02:36:34.124335Z", "shell.execute_reply": "2024-11-13T02:36:34.123684Z" } }, "outputs": [], "source": [ "qubit.clock_freqs.readout(7.9e9)" ] }, { "cell_type": "markdown", "id": "7264c083", "metadata": { "lines_to_next_cell": 2 }, "source": [ "## Resonator punchout" ] }, { "cell_type": "code", "execution_count": 15, "id": "5064df04", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:34.126272Z", "iopub.status.busy": "2024-11-13T02:36:34.126089Z", "iopub.status.idle": "2024-11-13T02:36:34.132233Z", "shell.execute_reply": "2024-11-13T02:36:34.131625Z" }, "lines_to_next_cell": 0 }, "outputs": [], "source": [ "def resonator_punchout_schedule(\n", " qubit, # noqa: ANN001\n", " freqs: np.array,\n", " ro_pulse_amps: np.array,\n", " repetitions: int = 1,\n", ") -> Schedule:\n", " \"\"\"Schedule to sweep the resonator frequency.\"\"\"\n", " sched = Schedule(\"schedule\", repetitions=repetitions)\n", " index = 0\n", " freqs, ro_pulse_amps = np.unique(freqs), np.unique(ro_pulse_amps)\n", " for freq in freqs:\n", " for amp in ro_pulse_amps:\n", " sched.add(Measure(qubit.name, acq_index=index, freq=freq, pulse_amp=amp))\n", " sched.add(IdlePulse(8e-9))\n", " index += 1\n", " return sched\n", "\n", "\n", "freqs = ManualParameter(name=\"freq\", unit=\"Hz\", label=\"Frequency\")\n", "freqs.batched = True\n", "\n", "ro_pulse_amps = ManualParameter(name=\"ro_pulse_amp\", unit=\"\", label=\"Readout pulse amplitude\")\n", "ro_pulse_amps.batched = True\n", "\n", "spec_sched_kwargs = dict(\n", " qubit=qubit,\n", " freqs=freqs,\n", " ro_pulse_amps=ro_pulse_amps,\n", ")\n", "\n", "gettable = ScheduleGettable(\n", " quantum_device,\n", " schedule_function=resonator_punchout_schedule,\n", " schedule_kwargs=spec_sched_kwargs,\n", " real_imag=False,\n", " batched=True,\n", ")\n", "\n", "meas_ctrl.gettables(gettable)" ] }, { "cell_type": "code", "execution_count": 16, "id": "41fff651", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:34.134132Z", "iopub.status.busy": "2024-11-13T02:36:34.133949Z", "iopub.status.idle": "2024-11-13T02:36:35.373885Z", "shell.execute_reply": "2024-11-13T02:36:35.373123Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t freq, ro_pulse_amp \n", "Batch size limit: 1000\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "b482b06631e54db78b09ec27fa85692e", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 32kB\n",
       "Dimensions:  (dim_0: 1000)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 8kB 7.68e+09 7.68e+09 ... 7.72e+09 7.72e+09\n",
       "    x1       (dim_0) float64 8kB 0.0 0.0 0.0 0.0 0.0 0.0 ... 1.0 1.0 1.0 1.0 1.0\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 8kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y1       (dim_0) float64 8kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "Attributes:\n",
       "    tuid:                             20241113-023634-137-fd08b0\n",
       "    name:                             resonator punchout\n",
       "    grid_2d:                          True\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             100\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 32kB\n", "Dimensions: (dim_0: 1000)\n", "Coordinates:\n", " x0 (dim_0) float64 8kB 7.68e+09 7.68e+09 ... 7.72e+09 7.72e+09\n", " x1 (dim_0) float64 8kB 0.0 0.0 0.0 0.0 0.0 0.0 ... 1.0 1.0 1.0 1.0 1.0\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 8kB nan nan nan nan nan nan ... nan nan nan nan nan\n", " y1 (dim_0) float64 8kB nan nan nan nan nan nan ... nan nan nan nan nan\n", "Attributes:\n", " tuid: 20241113-023634-137-fd08b0\n", " name: resonator punchout\n", " grid_2d: True\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 100\n", " ylen: 10" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.cfg_sched_repetitions(80)\n", "center = 7.7e9\n", "frequency_setpoints = np.linspace(center - 20e6, center + 20e6, 100)\n", "amplitude_setpoints = np.linspace(0, 1, 10)\n", "\n", "meas_ctrl.settables([freqs, ro_pulse_amps])\n", "meas_ctrl.setpoints_grid((frequency_setpoints, amplitude_setpoints))\n", "\n", "punchout_ds = meas_ctrl.run(\"resonator punchout\")\n", "punchout_ds" ] }, { "cell_type": "code", "execution_count": 17, "id": "3597fa4a", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:35.376029Z", "iopub.status.busy": "2024-11-13T02:36:35.375806Z", "iopub.status.idle": "2024-11-13T02:36:35.382146Z", "shell.execute_reply": "2024-11-13T02:36:35.381517Z" } }, "outputs": [ { "data": { "text/plain": [ "'devices/device_2q_2024-11-13_02-36-35_UTC.json'" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.to_json_file(\"devices/\")" ] }, { "cell_type": "markdown", "id": "58345656", "metadata": {}, "source": [ "# Single transmon qubit spectroscopy\n", "Here we will carry out qubit spectroscopy on a single transmon in order to find the $|0\\rangle \\rightarrow |1\\rangle$ drive frequency." ] }, { "cell_type": "markdown", "id": "c64fdbfd", "metadata": { "lines_to_next_cell": 2, "title": "BODY" }, "source": [ "## Qubit spectroscopy" ] }, { "cell_type": "code", "execution_count": 18, "id": "803dbf5e", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:35.384063Z", "iopub.status.busy": "2024-11-13T02:36:35.383882Z", "iopub.status.idle": "2024-11-13T02:36:35.387954Z", "shell.execute_reply": "2024-11-13T02:36:35.387408Z" } }, "outputs": [], "source": [ "def two_tone_spec_sched_nco(\n", " qubit, # noqa: ANN001\n", " spec_pulse_frequencies: np.array,\n", " repetitions: int = 1,\n", ") -> Schedule:\n", " \"\"\"\n", " Generate a batched schedule for performing fast two-tone spectroscopy.\n", "\n", " Using the X gate to perform the frequency sweep on the qubit.\n", "\n", " Parameters\n", " ----------\n", " qubit\n", " qubit that should be used.\n", " spec_pulse_frequencies\n", " Sample frequencies for the spectroscopy pulse in Hertz.\n", " repetitions\n", " The amount of times the Schedule will be repeated.\n", "\n", " \"\"\"\n", " sched = Schedule(\"two-tone\", repetitions)\n", "\n", " for acq_idx, spec_pulse_freq in enumerate(spec_pulse_frequencies):\n", " sched.add(Reset(qubit.name))\n", " sched.add(X(qubit.name, freq=spec_pulse_freq))\n", " sched.add(Measure(qubit.name, acq_index=acq_idx), rel_time=200e-9)\n", " return sched" ] }, { "cell_type": "code", "execution_count": 19, "id": "d54c0aee", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:35.389781Z", "iopub.status.busy": "2024-11-13T02:36:35.389534Z", "iopub.status.idle": "2024-11-13T02:36:35.393657Z", "shell.execute_reply": "2024-11-13T02:36:35.393066Z" }, "lines_to_next_cell": 0 }, "outputs": [], "source": [ "freqs = ManualParameter(name=\"freq\", unit=\"Hz\", label=\"Frequency\")\n", "freqs.batched = True\n", "\n", "qubit_spec_sched_kwargs = dict(\n", " qubit=qubit,\n", " spec_pulse_frequencies=freqs,\n", ")\n", "\n", "gettable = ScheduleGettable(\n", " quantum_device,\n", " schedule_function=two_tone_spec_sched_nco,\n", " schedule_kwargs=qubit_spec_sched_kwargs,\n", " real_imag=False,\n", " batched=True,\n", ")\n", "\n", "meas_ctrl.gettables(gettable)" ] }, { "cell_type": "code", "execution_count": 20, "id": "12ea48d4", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:35.395463Z", "iopub.status.busy": "2024-11-13T02:36:35.395278Z", "iopub.status.idle": "2024-11-13T02:36:35.964226Z", "shell.execute_reply": "2024-11-13T02:36:35.963501Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t freq \n", "Batch size limit: 300\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "68db11f5e36346049874b1d7b03c54ea", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 7kB\n",
       "Dimensions:  (dim_0: 300)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 2kB 6.08e+09 6.08e+09 ... 6.12e+09 6.12e+09\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y1       (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "Attributes:\n",
       "    tuid:                             20241113-023635-397-20f804\n",
       "    name:                             Two-tone\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 7kB\n", "Dimensions: (dim_0: 300)\n", "Coordinates:\n", " x0 (dim_0) float64 2kB 6.08e+09 6.08e+09 ... 6.12e+09 6.12e+09\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan\n", " y1 (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan\n", "Attributes:\n", " tuid: 20241113-023635-397-20f804\n", " name: Two-tone\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.cfg_sched_repetitions(300)\n", "center = 6.1e9\n", "frequency_setpoints = np.linspace(center - 20e6, center + 20e6, 300)\n", "meas_ctrl.settables(freqs)\n", "meas_ctrl.setpoints(frequency_setpoints)\n", "\n", "qs_ds = meas_ctrl.run(\"Two-tone\")\n", "qs_ds" ] }, { "cell_type": "code", "execution_count": 21, "id": "7d5e8a8d", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:35.966346Z", "iopub.status.busy": "2024-11-13T02:36:35.966165Z", "iopub.status.idle": "2024-11-13T02:36:35.969425Z", "shell.execute_reply": "2024-11-13T02:36:35.968815Z" } }, "outputs": [], "source": [ "qubit.clock_freqs.f01(6.1e9)" ] }, { "cell_type": "code", "execution_count": 22, "id": "a6d9fd20", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:35.971320Z", "iopub.status.busy": "2024-11-13T02:36:35.971154Z", "iopub.status.idle": "2024-11-13T02:36:35.976928Z", "shell.execute_reply": "2024-11-13T02:36:35.976293Z" } }, "outputs": [ { "data": { "text/plain": [ "'devices/device_2q_2024-11-13_02-36-35_UTC.json'" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.to_json_file(\"devices/\")" ] }, { "cell_type": "markdown", "id": "2cae21f4", "metadata": {}, "source": [ "# Rabi Oscillations\n", "Here we will carry out an experiment to measure the Rabi frequency that is required to excite the qubit to $|1\\rangle$." ] }, { "cell_type": "markdown", "id": "35f7094e", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Rabi Oscillations" ] }, { "cell_type": "code", "execution_count": 23, "id": "1c91a12a", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:35.978789Z", "iopub.status.busy": "2024-11-13T02:36:35.978625Z", "iopub.status.idle": "2024-11-13T02:36:36.225615Z", "shell.execute_reply": "2024-11-13T02:36:36.224841Z" } }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 5kB\n",
       "Dimensions:      (acq_index_0: 200)\n",
       "Coordinates:\n",
       "  * acq_index_0  (acq_index_0) int64 2kB 0 1 2 3 4 5 ... 194 195 196 197 198 199\n",
       "Data variables:\n",
       "    0            (acq_index_0) complex128 3kB (nan+nanj) ... (nan+nanj)
" ], "text/plain": [ " Size: 5kB\n", "Dimensions: (acq_index_0: 200)\n", "Coordinates:\n", " * acq_index_0 (acq_index_0) int64 2kB 0 1 2 3 4 5 ... 194 195 196 197 198 199\n", "Data variables:\n", " 0 (acq_index_0) complex128 3kB (nan+nanj) ... (nan+nanj)" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pulse_amps = np.linspace(-0.14, 0.14, 200)\n", "sched = Schedule(\"rabi_amplitude\", 400)\n", "\n", "for acq_idx, pulse_amp in enumerate(pulse_amps):\n", " sched.add(Reset(qubit.name))\n", " sched.add(X(qubit.name, amp180=pulse_amp))\n", " sched.add(Measure(qubit.name, acq_index=acq_idx), rel_time=20e-9) # wait 20ns before measuring\n", "\n", "rabi_ds = run(schedule=sched, quantum_device=quantum_device)\n", "rabi_ds" ] }, { "cell_type": "code", "execution_count": 24, "id": "bc8cb3e2", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:36.227786Z", "iopub.status.busy": "2024-11-13T02:36:36.227521Z", "iopub.status.idle": "2024-11-13T02:36:36.230942Z", "shell.execute_reply": "2024-11-13T02:36:36.230297Z" } }, "outputs": [], "source": [ "qubit.rxy.amp180(0.07)" ] }, { "cell_type": "code", "execution_count": 25, "id": "0fd96dc3", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:36.232861Z", "iopub.status.busy": "2024-11-13T02:36:36.232696Z", "iopub.status.idle": "2024-11-13T02:36:36.238487Z", "shell.execute_reply": "2024-11-13T02:36:36.237902Z" } }, "outputs": [ { "data": { "text/plain": [ "'devices/device_2q_2024-11-13_02-36-36_UTC.json'" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.to_json_file(\"devices/\")" ] }, { "cell_type": "markdown", "id": "3cf4a689", "metadata": {}, "source": [ "# T1\n", "Here we measure the $T_1$ decoherence time of the qubit." ] }, { "cell_type": "code", "execution_count": 26, "id": "96aa2221", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:36.240351Z", "iopub.status.busy": "2024-11-13T02:36:36.240184Z", "iopub.status.idle": "2024-11-13T02:36:36.243432Z", "shell.execute_reply": "2024-11-13T02:36:36.242793Z" }, "title": "HEADER" }, "outputs": [], "source": [ "import numpy as np\n", "from qcodes.parameters import ManualParameter\n", "\n", "from quantify_scheduler.gettables import ScheduleGettable\n", "from quantify_scheduler.schedules.timedomain_schedules import t1_sched" ] }, { "cell_type": "markdown", "id": "cd84b8ad", "metadata": { "title": "BODY" }, "source": [ "## T1" ] }, { "cell_type": "code", "execution_count": 27, "id": "0b520c5f", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:36.245330Z", "iopub.status.busy": "2024-11-13T02:36:36.245168Z", "iopub.status.idle": "2024-11-13T02:36:36.255735Z", "shell.execute_reply": "2024-11-13T02:36:36.255129Z" }, "lines_to_next_cell": 2 }, "outputs": [], "source": [ "tau = ManualParameter(name=\"tau_delay\", unit=\"s\", label=\"Delay\")\n", "tau.batched = True\n", "\n", "t1_sched_kwargs = {\"qubit\": qubit.name, \"times\": tau}\n", "\n", "gettable = ScheduleGettable(\n", " quantum_device,\n", " schedule_function=t1_sched,\n", " schedule_kwargs=t1_sched_kwargs,\n", " real_imag=False,\n", " batched=True,\n", ")\n", "meas_ctrl.gettables(gettable)" ] }, { "cell_type": "code", "execution_count": 28, "id": "5c0a3b4e", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:36.257610Z", "iopub.status.busy": "2024-11-13T02:36:36.257445Z", "iopub.status.idle": "2024-11-13T02:36:36.732663Z", "shell.execute_reply": "2024-11-13T02:36:36.731984Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t tau_delay \n", "Batch size limit: 400\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "7ec5a49461164f3790351db08130546f", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 10kB\n",
       "Dimensions:  (dim_0: 400)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 3kB 4e-08 5.4e-07 1.04e-06 ... 0.000199 0.0001995\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 3kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y1       (dim_0) float64 3kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "Attributes:\n",
       "    tuid:                             20241113-023636-259-6f8c68\n",
       "    name:                             T1 experiment\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 10kB\n", "Dimensions: (dim_0: 400)\n", "Coordinates:\n", " x0 (dim_0) float64 3kB 4e-08 5.4e-07 1.04e-06 ... 0.000199 0.0001995\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 3kB nan nan nan nan nan nan ... nan nan nan nan nan\n", " y1 (dim_0) float64 3kB nan nan nan nan nan nan ... nan nan nan nan nan\n", "Attributes:\n", " tuid: 20241113-023636-259-6f8c68\n", " name: T1 experiment\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "delay_setpoints = np.arange(40e-9, 200e-6, 500e-9)\n", "\n", "meas_ctrl.settables(tau)\n", "meas_ctrl.setpoints(delay_setpoints)\n", "\n", "quantum_device.cfg_sched_repetitions(300)\n", "t1_ds = meas_ctrl.run(\"T1 experiment\")\n", "t1_ds" ] }, { "cell_type": "code", "execution_count": 29, "id": "18cd7fe8", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:36.734845Z", "iopub.status.busy": "2024-11-13T02:36:36.734664Z", "iopub.status.idle": "2024-11-13T02:36:36.741328Z", "shell.execute_reply": "2024-11-13T02:36:36.740734Z" } }, "outputs": [ { "data": { "text/plain": [ "'devices/device_2q_2024-11-13_02-36-36_UTC.json'" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.to_json_file(\"devices/\")" ] }, { "cell_type": "markdown", "id": "c3f5365f", "metadata": {}, "source": [ "# Ramsey Spectroscopy\n", "Here we demonstrate Ramsey Spectroscopy, which is used to tune the $|0\\rangle \\rightarrow |1\\rangle$ drive frequency more precisely.\n", "Ramsey spectroscopy is also used to find $T_2^*$." ] }, { "cell_type": "markdown", "id": "5da2164b", "metadata": {}, "source": [ "## Ramsey oscillations" ] }, { "cell_type": "code", "execution_count": 30, "id": "076cd602", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:36.743199Z", "iopub.status.busy": "2024-11-13T02:36:36.743031Z", "iopub.status.idle": "2024-11-13T02:36:36.747019Z", "shell.execute_reply": "2024-11-13T02:36:36.746483Z" } }, "outputs": [], "source": [ "tau = ManualParameter(name=\"tau\", unit=\"s\", label=\"Time\")\n", "tau.batched = True\n", "\n", "ramsey_sched_kwargs = {\n", " \"qubit\": qubit.name,\n", " \"times\": tau,\n", " \"artificial_detuning\": 0.0,\n", "}\n", "\n", "gettable = ScheduleGettable(\n", " quantum_device,\n", " schedule_function=ramsey_sched,\n", " schedule_kwargs=ramsey_sched_kwargs,\n", " real_imag=False,\n", " batched=True,\n", ")\n", "meas_ctrl.gettables(gettable)" ] }, { "cell_type": "code", "execution_count": 31, "id": "71d19f6b", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:36.749179Z", "iopub.status.busy": "2024-11-13T02:36:36.748701Z", "iopub.status.idle": "2024-11-13T02:36:37.040451Z", "shell.execute_reply": "2024-11-13T02:36:37.039720Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t tau \n", "Batch size limit: 125\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n", "/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/compiler_abc.py:634: RuntimeWarning: Operation is interrupting previous Pulse because it starts before the previous ends, offending operation: Pulse \"Rxy(90, 0, 'q0')\" (t0=0.00010002000000000001, duration=4e-08)\n", " warnings.warn(\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "551601a4942a4fa2b69e9fd7bafa6fad", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 3kB\n",
       "Dimensions:  (dim_0: 125)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 1kB 2e-08 5.2e-08 8.4e-08 ... 3.956e-06 3.988e-06\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 1kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y1       (dim_0) float64 1kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "Attributes:\n",
       "    tuid:                             20241113-023636-750-341505\n",
       "    name:                             ramsey\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 3kB\n", "Dimensions: (dim_0: 125)\n", "Coordinates:\n", " x0 (dim_0) float64 1kB 2e-08 5.2e-08 8.4e-08 ... 3.956e-06 3.988e-06\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 1kB nan nan nan nan nan nan ... nan nan nan nan nan\n", " y1 (dim_0) float64 1kB nan nan nan nan nan nan ... nan nan nan nan nan\n", "Attributes:\n", " tuid: 20241113-023636-750-341505\n", " name: ramsey\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tau_setpoints = np.arange(20e-9, 4e-6, 32e-9)\n", "\n", "meas_ctrl.settables(tau)\n", "meas_ctrl.setpoints(tau_setpoints)\n", "\n", "quantum_device.cfg_sched_repetitions(500)\n", "ramsey_ds = meas_ctrl.run(\"ramsey\")\n", "ramsey_ds" ] }, { "cell_type": "code", "execution_count": 32, "id": "73c7eb9c", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:37.042536Z", "iopub.status.busy": "2024-11-13T02:36:37.042355Z", "iopub.status.idle": "2024-11-13T02:36:37.045817Z", "shell.execute_reply": "2024-11-13T02:36:37.045133Z" } }, "outputs": [], "source": [ "qubit.clock_freqs.f01(qubit.clock_freqs.f01() + 100e3)" ] }, { "cell_type": "code", "execution_count": 33, "id": "85821655", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:37.047668Z", "iopub.status.busy": "2024-11-13T02:36:37.047458Z", "iopub.status.idle": "2024-11-13T02:36:37.053470Z", "shell.execute_reply": "2024-11-13T02:36:37.052832Z" } }, "outputs": [ { "data": { "text/plain": [ "'devices/device_2q_2024-11-13_02-36-37_UTC.json'" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.to_json_file(\"devices/\")" ] }, { "cell_type": "markdown", "id": "4ed9c14c", "metadata": {}, "source": [ "# Discriminated Single Shot Readout\n", "Here we show how to run a readout calibration experiment and fit a discriminator with a linear discriminant analysis.\n", "This experiment is sometimes called multi-state discrimination." ] }, { "cell_type": "markdown", "id": "5a102aa6", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Schedule definition" ] }, { "cell_type": "code", "execution_count": 34, "id": "1417e306", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:37.055417Z", "iopub.status.busy": "2024-11-13T02:36:37.055252Z", "iopub.status.idle": "2024-11-13T02:36:37.060290Z", "shell.execute_reply": "2024-11-13T02:36:37.059605Z" } }, "outputs": [], "source": [ "def readout_calibration_sched(\n", " qubit: str,\n", " prepared_states: list[int],\n", " repetitions: int = 1,\n", " acq_protocol: Literal[\n", " \"SSBIntegrationComplex\", \"ThresholdedAcquisition\"\n", " ] = \"SSBIntegrationComplex\",\n", ") -> Schedule:\n", " \"\"\"\n", " Make a schedule for readout calibration.\n", "\n", " Parameters\n", " ----------\n", " qubit\n", " The name of the qubit e.g., :code:`\"q0\"` to perform the experiment on.\n", " prepared_states\n", " A list of integers indicating which state to prepare the qubit in before measuring.\n", " The ground state corresponds to 0 and the first-excited state to 1.\n", " repetitions\n", " The number of times the schedule will be repeated. Fixed to 1 for this schedule.\n", " acq_protocol\n", " The acquisition protocol used for the readout calibration. By default\n", " \"SSBIntegrationComplex\", but \"ThresholdedAcquisition\" can be\n", " used for verifying thresholded acquisition parameters.\n", "\n", " Returns\n", " -------\n", " :\n", " An experiment schedule.\n", "\n", " Raises\n", " ------\n", " NotImplementedError\n", " If the prepared state is > 1.\n", "\n", " \"\"\"\n", " schedule = Schedule(f\"Readout calibration {qubit}\", repetitions=1)\n", "\n", " for i, prep_state in enumerate(prepared_states):\n", " schedule.add(Reset(qubit), label=f\"Reset {i}\")\n", " if prep_state == 0:\n", " pass\n", " elif prep_state == 1:\n", " schedule.add(Rxy(qubit=qubit, theta=180, phi=0))\n", " else:\n", " raise NotImplementedError(\n", " \"Preparing the qubit in the higher excited states is not supported yet.\"\n", " )\n", " schedule.add(\n", " Measure(qubit, acq_index=i, bin_mode=BinMode.APPEND, acq_protocol=acq_protocol),\n", " label=f\"Measurement {i}\",\n", " )\n", " return schedule" ] }, { "cell_type": "markdown", "id": "013ce233", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## SSRO with single side band (SSB) integration" ] }, { "cell_type": "code", "execution_count": 35, "id": "6af7c3a8", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:37.062191Z", "iopub.status.busy": "2024-11-13T02:36:37.062027Z", "iopub.status.idle": "2024-11-13T02:36:37.066254Z", "shell.execute_reply": "2024-11-13T02:36:37.065639Z" }, "lines_to_next_cell": 0 }, "outputs": [], "source": [ "states = ManualParameter(name=\"states\", unit=\"\", label=\"Prepared state\")\n", "states.batch_size = 400\n", "states.batched = True\n", "\n", "readout_calibration_sched_kwargs = dict(\n", " qubit=qubit.name, prepared_states=states, acq_protocol=\"SSBIntegrationComplex\"\n", ")\n", "\n", "# set gettable\n", "ssro_gettable = ScheduleGettable(\n", " quantum_device,\n", " schedule_function=readout_calibration_sched,\n", " schedule_kwargs=readout_calibration_sched_kwargs,\n", " real_imag=True,\n", " batched=True,\n", ")\n", "\n", "# set measurement control\n", "meas_ctrl.gettables(ssro_gettable)" ] }, { "cell_type": "code", "execution_count": 36, "id": "88f3031f", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:37.068232Z", "iopub.status.busy": "2024-11-13T02:36:37.067853Z", "iopub.status.idle": "2024-11-13T02:36:37.167251Z", "shell.execute_reply": "2024-11-13T02:36:37.166564Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t states \n", "Batch size limit: 400\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "882f5beca8894c1a9fa6417b009b4b10", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 48kB\n",
       "Dimensions:  (x0: 2000)\n",
       "Coordinates:\n",
       "  * x0       (x0) int64 16kB 0 1 0 1 0 1 0 1 0 1 0 1 ... 0 1 0 1 0 1 0 1 0 1 0 1\n",
       "Data variables:\n",
       "    y0       (x0) float64 16kB 0.01177 0.0186 0.03126 ... 0.01101 0.03909\n",
       "    y1       (x0) float64 16kB 0.01881 0.03123 0.03309 ... 0.01339 0.0264\n",
       "Attributes:\n",
       "    tuid:                             20241113-023637-072-4cdbd5\n",
       "    name:                             Single shot readout experiment\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 48kB\n", "Dimensions: (x0: 2000)\n", "Coordinates:\n", " * x0 (x0) int64 16kB 0 1 0 1 0 1 0 1 0 1 0 1 ... 0 1 0 1 0 1 0 1 0 1 0 1\n", "Data variables:\n", " y0 (x0) float64 16kB 0.01177 0.0186 0.03126 ... 0.01101 0.03909\n", " y1 (x0) float64 16kB 0.01881 0.03123 0.03309 ... 0.01339 0.0264\n", "Attributes:\n", " tuid: 20241113-023637-072-4cdbd5\n", " name: Single shot readout experiment\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "num_shots = 1000\n", "state_setpoints = np.asarray([0, 1] * num_shots)\n", "\n", "# replace the get method for the gettable in case the cluster is a dummy\n", "if \"dummy\" in str(cluster._transport):\n", " from fake_data import get_fake_ssro_data\n", "\n", " ssro_gettable.get = partial(get_fake_ssro_data, num_shots=num_shots)\n", "\n", "meas_ctrl.settables(states)\n", "meas_ctrl.setpoints(state_setpoints)\n", "\n", "ssro_ds = dh.to_gridded_dataset(meas_ctrl.run(\"Single shot readout experiment\"))\n", "ssro_ds" ] }, { "cell_type": "markdown", "id": "322061b8", "metadata": { "lines_to_next_cell": 0 }, "source": [ "## Fit line discriminator with linear discriminant analysis (LDA)" ] }, { "cell_type": "code", "execution_count": 37, "id": "ff342a14", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:37.169213Z", "iopub.status.busy": "2024-11-13T02:36:37.169041Z", "iopub.status.idle": "2024-11-13T02:36:38.506458Z", "shell.execute_reply": "2024-11-13T02:36:38.505761Z" }, "tags": [ "nbsphinx-thumbnail" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAJICAYAAABWsl4sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUxRsH8O97CSmkSgktxBASauihI02aiCgiglKUjqAgEBFBUbAgiggKShFpAlIUQfwJCgQEBOldkCokRCBACiEhJDe/P2YPLpe9vZK7XMr7eZ57Ire7s7Plzpt3Z94hIQQYY4wxxhhjjDHG8prO1RVgjDHGGGOMMcZY0cRBCcYYY4wxxhhjjLkEByUYY4wxxhhjjDHmEhyUYIwxxhhjjDHGmEtwUIIxxhhjjDHGGGMuwUEJxhhjjDHGGGOMuQQHJRhjjDHGGGOMMeYSHJRgjDHGGGOMMcaYS3BQgjHGGGOMMcYYYy7BQQnGGGM2IaKBRLTT1fWwBRHVIKLrRFTC1XVhEhGdJ6JOrq4HY4wxxlyLgxKMMeYERFSOiBYQ0SkiSiciYfS6T0TniGgVEVUxs/17RJRJREPyuu5WqAigkqsrYaMgAKUBcFAi/wgDEOzqSrC8Q0S1iSipoAU1GWOMOZe7qyvAGGOFjfI0/pjyzxUALgO4Z7RKMQAVAPQEcISIagghLpkU0xKAG4AmAOY7tcIsTxBRFIBHhBC/u7ouzDwi8gXwEoCvhRB6V9enkKkLwB9AcxfXI88R0csANgsh4l1dF8YYy284KMEYY443DoAHgAghxHVzKxHRFACnAUwAYNojYiXk0/31zqoky3MjAIQD4KBE/tYAwGwAmwCcd3FdCpudAPYBOOHqirjAIgCDACx0dUUYYyy/4aAEY4w5XgMAG7QCEgAghEgmol8A1FJZtgDAAifVj7kGKS+Wv5HJX+YgQoiLABq7uh4uxPcUY4yp4JwSjDHmeBUB/Gflun8BSHNiXRhjjDHGGMu3OCjBGGOOdxNAgDUrCiG+EUK0NX2fiKoT0TW12SKIKIaIBhNRSSL6mIhOEFGKkkTzGhH9qSw3+x1PRKWJ6GsiOkZEd42ScP5HRFuJqB8RTSai72w68oflhxLRd0T0NxHdMyl/JxH1JSKbnxoSUW8iOkpEaSbJQw3HvoKIymsUoSOi54hoJREdVo79PhGdJaKfiKiuhf23IaLfiOgSEWUp+81S/v0bEbVR2WYrEQnIPAXNTeps9VAOItpGRK8q/91EOdZLRHSHiOqZrJur809EzZVzdMHo/shUErSuJ6L6Furakog2mZynbC8L29dVrsc55foYtosjoh3KNcxRfyIKVO6DSO2zCShldzL690tKvWKUt84a7TeNiCIslWlUli8RTSWiQ0SUbFROEhEdIKL3ichbZbuGJD/fZhOyEtE7RDTN5L0OyrVyUz4jv5GcbSbL0v1pUo7adctSyv6FiJpobHuWiJ5W/rujcp/EKsccZLTeNiIarLL9AOXallPu3RvK/u8R0Wkiep0kPyKarZSdRUR6pX5LjfejUr6577wEItpDRKOJSLUHMcnvwmVEVIyIXiWi3UR0U9k+WbnO04jIz2S7KqQkOlbeWmDyOeirdT0YY6yo4OEbjDHmeGcBPEZEbkKILDvLKAOZU6IEgFsmyyoBaAVgMoB0AL8CuAogGUBJAHUgk2M+BqCfacFEVArAKcjA9AoA3wG4C9m12A9AVQDzlPLO2lpxIqoO4CCARABrAFxR6kkASgGoB2ApgKYAhttQbiulrusALFPKfLAYQDUAz0Hm42hlppj5yrIYyNwO3wHQAygP4EkAB4noCSHEbyr7HwA5HvwggO8BxAPIgkxIWg7A4wC2EdEQZfiNwUdKnftCzgAyw2jZSSsPH5CzVYSSDEzMArAbwM8AzgD4x6ieuTr/RNQRwEYA5wD8CNnrJx0yQWt5AE8B2E9EnYUQm1W2fxly/Px+ZD9Ppr5UO0giag+Zz+EcgJ8AxAG4D3m/Bin1XgN5XieabB6orFMWlvMWVEb22T+2AngVQBUAIwFMAXBDWZYGmbDWIiLyBHAAQCjk52sNgBRlsR9kXpFoAE8TUQMhxH2jzeMhP79LiOhp00SbRNRDqdfrJrstD/m9sBDAi5DnbyGA65D3dzkAbaB+fxrKfhnyuh0CsAryO8X4/m4H4E8ielEI8b3KoYcDqKgETN4A8Jty7CchA7UGYQAeVdk+BEBNyOsQD+BryPPvA6A1gM8hf7d2grxGayCviQAQAaA/gMYkEwdnu9+MvvOKIed3XiCA6gCmA2hPRE8KIUyDZo9Cfr9shvz8/Axgi3JcPsoxvQqgGxHVFkIYvpsuK+97Qd7vKwH8qSwTALapnAfGGCt6hBD84he/+MUvB74A1Ib8Mb8WsgFsaPwYXqUAkIUyWkP+aA1XWXZJWTbaXDmQwQgBoKHKslkAEgCU0th/HcgZQ3apLHsPQKzGtusBXADgr7HOMOUcRdpwXhcAOKp17gB0V467gpnzmaB2TpR13CEDFSdM9wGgOIBrkMEQnZntdQCWQGlIqSxfrHY+bTj+SwC2A/gXQEtnnX/IxuQ+AJ5mti2m1MPcefpPOQ+q58loXQFgkMl7BOC4Un4xjW2nKPdnRZP3Q5Vy21lxPnPs3+ReyfHZs/I6jVbObR2NdSKVdV5RWdZF2f+bJu/XAHAHMtBjet5fVrY5CSDYzD4JMuiQ4/4E4K1ct1UA3DTu75WQDe0c94ay/y3K9att4T7+QOX995QyPlA5PoIMJmRBBhfUPl8dle2fUVk2C0ASgPIa9eqkbP+EyrLFyrLvAXiZ2b6Kck9G23K/8Ytf/OIXvwQP32CMMUcTQhwD8DzkE93tkE98rxi9bgBIUroxa3aD17BDCPG5EMJcN/jvIBvgaj0GWgNYJoRI0DiGo3j4RM9qRERK+XOFEMkaqy6EfHr8uA3FVwTwj8YxA8AvAD6B7OWh5n0hxH61BUKITABfQD6tLWmyuBrkE/gZwsw0kcr7n0EGnapr1DE3WgHoL4T4Q22hg87/bcjzdE9lGYR8sv8l5HkKNFlcFbKXj9nzZMEjkA32WSJ7DwJT0yFnuMmPSRNbQ079eNTcCkKIE5A9nDqoLNsI4GMAHxJRSwAgIn/I3jYXAAzU+Ay8KoSINbNPAdlLR+3+rAZ53T4TZnp3Gd3fFZX11TQH8LzyHWivT02PT/n3MsjAyBwhRKrKdr9BBg5zJA6GvCbLhRBXNfa7GTKok+OaKNIgz3262kIhxD+QPShaa+yDMcaYCh6+wRhjTiCE+IGINkB2+60EwNNosSfkD/t+kN3gGwohDtm4iz0W9q8nosvKvk2Fwrqu6FcguyXbIhCAP2TjSat+95X6hdpQ9i3I4Q9a5aYDeFNjlRzDMkxcUv5WggzqGDxqstyci0bbH7Cwrj3+EUJodfkORC7PvxCiJ/AgwPEIZO8HU4aGWShkEANG/wZkbw57WHWehZy55hbU729XC4Wc+tKSC5BDrNS8A6AZgO+VwOXXkEGxhmYa5AaWAomXlL+m92eoUZ20GJaHQvZaMvWHEOJvC2VouS2ESDKzzBBsuai2UAghiCgOciiLqVDIoIZZyvYXYP476aiFcw/I+76ThXUYY4yZ4KAEY4w5ifKk95zyyoGIvoQcd/8RbP8ha02uihSoJ9z0x8Mx7lrsedJt2F8xIgrWXFOO6dYMMpjYCeBLIuoNYC9kV2ljt4QQdy2UofX0HXh4XkzPW4DJclVCiBTZlrcu0akdLOWgyPX5J6JHIO/JF2D5OMydpzsWtrNUnjX3p7n729UCAOitOP9ZMHP/CyEyiagXgMPKqwyAJ4UQqt8lJmWapXF/Gv7tS0ReGkUYkoua+9zakiNFjdbnN83KdXIkEIX8ztNZcU3uQebPUJOb71zGGGMaOCjBGGMuIoTIIqJFAD4gIrIwLKGgWWHlepaSERr7BkBbyKEpqojoHwBjlS7whZHWkAxjuTn/syGTfn4OOX5fbcra8pDJUJm615SXJefNLRBCxBPRCsgcFeuEEL86qnIaVHshqFAdwgDr709XmKa8LNnq7IowxhjLjoMSjDHmQETkAZls8XsrgwxXIJ/iPYKcs2wUZO8AOGLFelYPcVB6nvQgokqQyUONn+gS5BPK3gDWEFFVIYRVsyUUUnadfyIKhJy9QXWGBqP1wnNTuSJgNSwMF1CYDQIos82MhEwc+TQRtbUwdMcRnoHlHgGZAHY4uR7OMBsyb4Qlue3twRhjzEYclGCMMceqDfmU+jCA01as76b8tXfqUHvcgZzGzhKyvEoOhm73R5zVW0EIcRFmGnNEtA4yuNMeMpmjoxiOyxdyqk1VROSn/KfauPhUqOdncKTcnn9DjgbVZKBGzP1+MBy3pfNk7t4yPs+W+CHneTY8qdfcnoi0fv8Y8gbYe61SAFzJzf1PROUhZ8LYDqAz5BSfK4morhAiPhflmrs/Ded9qxDC3qE3+dkdAGdc3IPqLpz/+WeMsQKJZ99gjDHHMiRjszYBXyi0k7s5w0UAIVasp5bFHpBdtz3NLLsF2cCpaKlwIlpORFpJKU3Xf0XpJWGWkojuFoCy1pZrpUvK31AL6xnqpxY0uQQgWKNB7gi5Pf+G4Jil3wfmZk25pPwNtbB97dxsr8xGUQI5z/NtyOO3dH+30FhmqIPFc2jGRWu2Ve7nHI1kIioG2dMiE8CLQogMyN4resjEl7l5oBRqVEfTOgMW6k1EXkT0NxGZS9CZX1l7TT4ioq+cVIdL1tSBMcaKIg5KMMaYY12DHJIxjIg0v2OJyBfAUADO7pJtaieAfkRkOu0lAICIdEQ0FkA9M9tfBFCSiHIkhFOGrPwBYIgylEWV0v2/J+T5slY0gFFaKyhJGkvhYXDIUU5DzsYx2lxQQXl/jLKe2gwEf0ImCHzewXV7wAHn/yJk41dtKlnDtvUATDKz+AyA69A+TyUBzDGz/S3IczdSaZybMxZABoC/jN9Ujn8H5OdPLeEhiKgC5NSv5iQAOAtgOBG5aaxnzh8AniKiUHMrEFFxyJwTatPyfgI51enzQojrACCE+A9AL8hgyod21Mlwf46G+v15GnKq4lctBM16QU4H6ujPl7P9AaAvEZlNQklEpQEMhrx/nWE3gD7KECnGGGNGePgGY4w5kDKt3BgAawAcIKJNkA0/4+EZngAqQDZOHwHQJY+rOQWycXFGSaR3BbL3g79Sr86Qw0q2InveBoNfIX+4byGi7wHsNhnr/iZkroLTRPQDgHjIBiRBdl+uBKAHgH8ArLOh3qsBRCuNhyPInoCRILvzd4fsfu/QpIBCiFQimgBgPoDqRLQFD6+rG+TsCI8DaARgqNrUgUKI3US0BrIbfnfIXAG7hBAxjqwrcnH+ldkZ5gGYRkSRkI1XQ8+YIABRkAGLzwCMUznGu0Q0HsC3AKop5+m6su/SkA3azjBzfZTPz2gA/wNwjIh+Vup/H/JBSikATQG0A/CREOKKmeM/qBz/WgBX8XCmi5rK/j+DmZ5ARp/hDQAOEdGvkFNhLlWmnLVkNoAhSv2XQ04TaRgS4QnZi+dpyGShfYw3JKLnALwO4HUhRLbpPYUQO4hoIoCpRLTTzFCEEURkOhTMcH+2hQx25Lg/ja7bQgB1iGg7ZJAiC/K8+wGoA6AbgBXKEKqCxPCd9w8RrYQMqhiupTeAYMjvjkzIe9cZ3oP8zj+j1OEygFVCiDgn7Y8xxgoOIQS/+MUvfvHLwS/IJ5qbIBskWQCE0SsdsrG3FECIme2rQzZ6S6gs2w5gsBV1WALgAzPLykDOnnACcqyzgByPfxzAxwBKAlgM2WhW2742HgYnfldZHgZgOeQT2HtGx56kHPs0AGVtPKceAKZCdoPONDmnAvIp+3YATVS2rWHufJqsF6isF2lm+eMAfodsUOiV/eqVf/8O4HEL5btDPiHfB9noy3HuNLbdCuBdK9e1+/xDNtIm4eHMGwIyKBAL4HsATZT74zqA6mbKaAXgN+X+1yuvm5C9dIYr5+E8gE5mtq8PGRQ4b3Ktr0I+9X4eANlw/FnKdd0IoIuyjtn9K8sbAfgFsvdIMoAIG66Vn3KOjyjbGuqfBhngWAagrsp2n0N+7lSPDTJAsBoyIGP8/ssqnwfDy5b7s7XJdTOUcUO5Z0cC8DCz7TkA/a04NzFQ+f4CMADATo3tNO85ZZ1lACabWVYGwFxk/84TkAGjswC+AlDZzLZTAHxnxbENBPCHxvIKkEGPU5DB037W3lP84he/+FWYXyREYZqBjjHGmKMQ0WIA4UIIrfH3jDEXI6KXASwCUEwIkeni6jDGGGM24ZwSjDFWxBBRDSIyl6jSmA55OysIY4wxxhgrYjgowRhjRc82yG7YljwK2e2bMcYYY4wxp+BEl4wxVvT8BuAdZXrNfyDH7BsrBpnUriWA5/K4bowxxhhjrAjhoARjjBU9r0HOxtANMvmb6RSAGZDJ/V4D8GPeVo0xZoereJickjHGGCtQONElY4wxxhhjjDHGXIJzSjDGGGOMMcYYY8wlOCjBGGOMMcYYY4wxl+CgBGOMMcYYY4wxxlyCgxKMMVZAEFEHIrpARPzdzRhjNiCiKUT0ncr7A4loZx7sP5CIrhNRpLP3xRhjBQ3/sGWMsTxAREFEdE0JKhSzs5jyACrBAd/dRORDRBOJ6DgRpRCRMHrFEtFWInpcY3svIppARH8QUZzRtteIaDcRfUxE/ma21RHRC0S0h4humOz7FhH9RUTDicjNxmPSEdE6IlpuYb1qRHSUiIZprONORPMtNVaIqBsRXSaiWmaWd1TO5VWT4zScpxeJyHT2E7uR9DwR/UZE54koU9lfMhEdIqIlRFRZY/smRLSRiK4Qkd6ovneJ6BgRfaZxXX2I6C1lPeN7KpOIzhHRGiKqqrHvCCJaTURnjepteF1VzmNrje0bE9HPyvUwrvstItpHRCOJyN1kmzYq+zL3etniBbDA3s+Ncv6sqeM2k+1KEtF0IjpFRGlG6+mJ6JJyrevn9risPPZoZZ+u+u0ZAiBU5f2KkN+rzhYIoDSAssZvElF1Ikq38vrqiejZPKgrY4zlKZ4SlDFW5Ck/kocBWCaESHHSbqoBCFL+uxyAy07aj0VKI3gNgLYAVgL4DkCqYTFkPR8HsIWIXhRCrDTZ/hEAf0H+kF8LYAeAGwAEgFLK+yMB9COilkKIcyZViAYwDcCvAL4AkKhsC8gf7nUBzAFQG/K6WOsNAM8A2G1uBSIKB7AVMsATbGYdNwBLAbwAIE6jrK4AVkP+v7QMgOMmy7tBTqm6G8ACADchp2wkACUANAKwHEAVAO9ZPDoLlOu6GsBzkMf4I+RUkfcB+AF4FMCTAHoq1/VHk+2bAdgJ4ASAJZDXNEtZ7A2gMoChADoSUV0hRKbJvpcD6ATgewArANxRFrtDnu/uAI4RUR0hxGmTfYcDOAbgtrL9FaXewMN7shOAGCJ6Sgix0WT7hgB2Afgb8toZ1z0A8l6aCaA+gJeNNj0C4FVY/j30MeQ1s1suPzfRMHO/GnkGD79jQESekPdBJchr8y2AdGWxG2TjuAuA/cr+zH5ucouImkN+5nXKi6cufagMAE8AUyDvBy16aHy/McZYgSWE4Be/+MWvIv2CbKwJAI87cR/+kI2QXwHo7CzjZaWe7rmsSxulnI4a6xCAVQD+hTJ9tNGyGZCNx6oa21cEcB7AWpP3vSEbRlMt1HE4ZKMywspjagjZiP0PwC4z64Qqx3MKQAKAD1TW0QFYpJT1J4BYM2V1AnBPuaYCQDuVdc5ABglIo96TAdwFUNIB91hXpS49NNbxAbAOstFf3GTZDsiGvZvG9rUgG0b9Td5vquy7s8a2ngD+AbBKZdl3AK4DeERjex2AjQDOqizbDGCP1mcDQH+ljjVtPK8EIAPAS7m8PnZ/bqwsfz6AGJPjvQ+glsY27sp9viO395/GPgIBXFI+m7n+/spFPRarfTdABgRVP+cO3n+o2ncFgNbK++GuOC/84he/+JUfXjx8gzHGZKPD+K/DCSGShRCthBBPCCFc/ZSwOWQD8DdzKwghBOST1RBkf/pKkL0XZgghzmhsfwXyyV93IjLurtwAsnG61EIdv4VshFrsWk5EfpA9Pn6AbJyqrVMCwDbIHiFt8PApvqnPAPQB0BNmzg8RNYFs2P8EYKCZdUpC9oBYoZxLcxZDBmpqaKxjrVcAbBNCrDG3ghAiFcBYABUggxiG+haD0nNDCJFlZnMIIY5DPu1vZLKoKWSPl181tr0HeZ2iVBY3VPZ9W2N7PYC5AMKN7ymlp1MTyGBHprntASyDDKjYOlyhPIBikAEtuzjgc2ONSiZ1bA7gkHLNzO0vE7JXTCOljg6llDkPQCaADx1dPmOMscKBgxKMMVb0HAQw2UJjGQDilb8hRu+VgWxE77ViP38qf43Ha1+FHLJxOufqDwkh0iGfKodoraeYA8ADslFu7pj8ABwA0EYIcU2jLB2A7sJkaIOJRyCHY/SGbGypSQUwFcAWjXKAh+f4UQvrWaMSrLguQogLyn6Nr0sWZIBkvRX7iUfO67IbwFgr76kQlQbwo7BuSNNB5W95wxtKsOIzyF4pZikN8Buw/Vw/BRnE+tPSihpy+7nRpOShaIXsQbmdAKZbsXk8AC/IISSO1h9y2E5vAM4aGscYY6yA46AEY6zIIqK2RJQJ4KLy1u9GCcUyjZPqEVENJRmd5rhykhnWr5FKhnUiWkxEH5jZzoOI3iSZ5PGmWpIzyGEFuSaE+FUI8ZUVq4Yqf2ON3jM06OJhmSEfw4PGlRDighBilKXGKxEFQDb+r1hYrzdkz4Z+Fp6y/yuEeN5CQAJK3TZYWOdXIcRIrafyQoh0IcQEIYS5HhkGfspfS+tZ41FYd10AeW2Mr4teCPGKEOKqFduGwuS6CCH+EkJ8a8W2fgBSVa6/J6w4B0KIeMgeKIdN3p9iqe5KIMTPmv0YbeMP4C0Aq4UQGdZupyJXnxsrTIZs9G8yvCGEWKLVa8ZIKOQQIrOfH3uQTGr6JWQA9C8r1vdTEn0eIqIko+++u0qiz8+JSDVwQkSliehrkklW75r5/nzJwv6LEdFrRLSLiBKUpJL3SSZe/YmI6mpsS0T0DBFtJ5koWG3/F81tb1KWjohKEVGw8vK0ZjvGGCvIONElY6woOwyZ5K4M5LjiOXj4BD8TMgmeQZDyKgHglkaZgcp6ZSETBhoLhcr3rtJY2gSgJWQeh43InvzRoAnkE0fT7d0A+AkhEjXqZROlzNcBXFAaggbeyt/0HBuZEELcVR6IF7ejCqMhu9qbfbJMRGEAvgYwTQix3Y595AePwcJx2sALVlwXxV3YcV1IzshSF8Dntm6reAwyb4WaB/e7EpQyBGwyAVw3DHsSQpy1c9/1II/Z3P6zUYYFrQHgC2C8nfs0cNrnhoiGAhgFYKBWYM7Mtj6Qw0r2Whj6YhOlIb0S8jt2qpXrH4BM5rkC8rwbelY8AqA6ZE6dZkTUxDiopQQqTkEm7zQk7r2rspu+GlVwh/zebQrgZwAxkHlndJC9cjoDOEhETwgh1IZ1TYL8f8g2yB5H15EzmWdJaCe0HU1EbSCDbsYzDwki+heyd9b0XAbHGGMsX+KgBGOsyFJ+wM8lolDIH4s/CSEsdbd3hmcg8xy0E0JsNbcSEd2BSlACMrP+80RUWwhhGgixGRGVgUya1wZA+9yWZ+O+PSB/4E8A8L4Q4pKZ9YpBNl7OAng3zyqYC8rsCz7KP70gG8mfQzY0/nNZxaygBM56AfgKwB+Q597S+uXxME9LKchZQR6HDEyo8SSizyA/D2EmyzKI6DRkvoUfrehp4wc56wYg80FUhxzKsBoPh4BobR8EmR8jFEAXIYSlWRHynHKOJwN4B8BHkI1hW7YPV7apBKCHg6v3EYBwAHWsDHaMUOoRKYT4R20FImoJmYy1PrJfw3cggwfVhBDXze2AiKKUOqkpAxnIKCuEyBHQIKK3APwPwAwiqmUSFCkPGbR6XwgxSWP/oVAPShhmmRkGOfPMfMgeNamQn5+SkMf8LuR3hqOvFWOMuRwHJRhjzPVaAziiFZCwIBHyCey93FaEiHpA9j7wAdDX2iANEW2CTFYYKuycVlXpHr0ED6dvfF9j9cnKevULwpND5Yn0DWR/AgrI3jiTnbjftyAbQh3t7U1CRKUh74nukE+Qe2olw1QMgUxKaeotIcQhM9u8CdkLaTbk8BBDrwJ3yGl0O0NOpTkE8qmxln8geysZiwXwqhUBjVDIJKdeAFoIIf62sC+72fu5UXoyzYE8FyOFEF/asK1hCuRPIc9xVyHESZsqrl1+RwBjIL8/rBqyAJkPY6O5gIRiJ+Q9YjpMpzWApVoBCSsIAIPVAhKAzEdCRF8C2AAZJEgwWtwY8l75zM5974OcavcPYTJVrpHFRLQDwFoiaiSE2GfnvhhjLF/ioARjjLleKHKR2V8IMQyykWE3IioHmYDyOcinkAOFEEdtKOIRyO72Nv9/hYi8IMftT4D8sd9DCLFWY/02kE8mX9H4EZ+vCCFSSeYoCVTe8oN8avsqgO1E9JgyO8UDRBQM8+cz3creFYGQSUB9LKyXg1HviFmQU9q+B+BDK598fw8ZBCDIp9hBkLNBfERE94QQasM/7gBoKIS4r7IMAL4mooVKGd9aCIx0gQxkAHIYRChkw28fETUQQqgOwVIa+xsgE382V2bDUFvPHXKogTmJVg6nsvdzMwZy5pcXhRDfW7sREUVAPolvDZmEdYi5wIEyLMLXTFECwGXTAI/Sy2oJ5PVfbm29IHtJbNNaQdnXJyqLQpGL709FvBAiwcI6l5S/lZA9KBEKIEkIkWTPjpX7fb4Vq/4IGbRrBhnIYIyxQoODEowx5noByJ5MMs8oDc+BkF3bdQBeA/C1FU/CTbUC4GnrD3MiagHgG8hx1F8BmKhVhtJQ+g5y/Lc1P+TzDSFEjlwGRPQtgHMABkP2EDC83wFmpjc1Wqea1vSSircAfGbrU2QiCoGcyrETgK2QASCrczko1/AXk7e/IaLjAKYR0RKVwMBajYCEwTIAAyCnNDU7W4cQIscQDSKaA3muJwCINrPpQAA1IXvgaCVZnQJ5bs2Jh9EMIRps/twoQ0veBjDT2oCEEkQZBzk0KhHAC5BTqKr2GlF69sRD+3fiUBh9BpUeGIsBZAAYbsVMLMb8YX+y19xsa2BNXQ09WQJM3g9wwP4tEkIIIoqFbQlQGWOsQOCgBGOMFVFKXoY5kA3i9ZBd2+0Kjgg5hae1SRYN+x8I2fA9DaCZEEIz2aMSQPkGcgjEQBsbPfmSECKOiP4HOe3kbKNFfwB4Aho9JSAb2JbK10Mm3bMaETWCTPbnDjljwTIHnusFkN3cO0ImJTRmy8wUobBuCtEHlN4qKyDPtbmgxOuQx2upl9BMaE8RatUsKPZ8biATPgKA6kw+pojIF/Jcd4H8/IyzlBBTOVdt8LBnT45VkDNh6CjI69rG1oSbzGopyBkUYYyxAo+DEowxVgQpDfy1AJ6EbIh9YWXD0zDm2ltzLbkPw+wBaonjxkA2TpcBGCqESLNi30MBPA0ZRPFUhjeY8jFalqA0+vKc8tRYWHlOrwDoYPyGUu9N6qublQYrrouiONSvy2OQPTT+BtBNCGFVw5+I3KzpXSOESCGiJAAVVRZb6iVhvI6H0b4JgM7K3j1XzOzbkIi0OqzI8aH0PNloxf4MHPK5UTQD8Kc1vSuUoVExAGpA5gJZbUVdAaj37NHYTx0AH0NOW3zezGfTMJ1yMBHdtne4Q2Gj3L+w8ruCLK/CGGMFDwclGGNMZjkHtKfgS1b+mhtjbWDP92qSFeUCjv1B+iKArpBj0k2fWGsxNFLLAjhuYd0Kyt9sY9aJqDJkdv75AIbZ8BR+pPLXUpJDQDY+N0MOP3CFJZDjzkdbsa4bZEAhty4jZ3JHcyoAWGf8htJzZh7kjCYtrAwUGWa6iCOi1hpJLI2pHW8yAE8rtvVS/hoHm6YAiATQzc59GzRS/v5lRTm2yvXnxkhjyOtkjbGQMze0FkLstHIbewyFDBQNUF5aLgK4S0T+RoGkZFj3HajG2m21vj+t+W41TFFrGkzJ7ff3Z5C9HwZaUUYAgJtWrMcYYwUKByUYY0w2Hu/CzBNUxSXlbwjkjAnmtLBj/5cgx5ZbUtuOsnNQnuJ/AmC1jQEJQA4FSIN8Wvu7hXWbKn9NG1fvQ3ZvH23jsIBekOdfy2jIBIfjIGdgcJUUAC2tXLcSHt5fuXER8rpoIqJKkOfI9Lr0B1ANQC1rAxKKu5D5SJoD0AxKGCVPvGSy6F88bIxrMXxGjeueAqAlEZEV95PWuTbkgNDKJWEvR3xuDJ/dsrBi6IrS82MC5JSzzgxIAMCHkFNmamkHOcTjGQDXTXq2XATwqNbGSo+C0QBWmCR5vQQ5nMeS2ngYgDZVjohKCiG0GvyG+plel0sAAogo0EJyU3Pf3ykAntfYDsCDvCAV4ZjvCsYYy1d0rq4AY4y5mtKQ2Q1gMBGZe1p7G8AJAK8pPw5zIKIa0J7G0pwdAOoQUVtzKxBRewCDzCxzJ6KSNuyvvPKyNSBhyFHwNYDXiai6ufWU7tuTAPyoMktEIwDrzU2/p7HvY0KIjVovyAblLeXfrgxK7ARQj4g0AxNEFAnZmyPGAfv8CkBrIuqlsb/ikE9mr0LOMmGsEYBjtk4PqTQudwMYogwXMLdvgszlcBc5Zw/YAaCv0uvC3PY6AMMhk8Ia52zYCTk04EWtehJRWQB9YP5c+0DOamJrkleLHPS5AR725jLXuDZWU1nf5s+5rYQQcVZ8No8oq/8ihNhjUsR2AE8SUVWN3TwGee+aBq8M905ptY2ISEdE4wDU1SibAMw3GjpjWoY7ZE+tU8jZU2EfZM+dMWYLl9PMTjOzeCeACkT0tEb9ADn9qx8c813BGGP5CveUYIwx6U3Ibtt/E9GPkE+jlhsStimZz8dAjvM/SkQbAfwH+WM2CLKLdFvIWSzetHHf6yB/lG8mou8hEz8mQzYoykD+GG8AmXywq8r23wHoSUS1hBAnrNif4Yd/bTNjv41lQmbpN05c9yFkssBjRLQWsrv/DWVZCcin0T2UYxhvXJgS9KkEoCQRvWpFXX+3YoaJ/Gg15DStvxPRKsgcDSlGy30hpwTtDeAMHDOTyEbIPCEriWgQZK+Fq5DX0BfyKetTkPdrb5WgUFUA6VZel1NCCOMpHMcCOADgDBGthgwaZCjLdABKQ/akaAPgbSHENZPy3ocMKpxRzlccHg7RcIP8HHQCUA/A80ojHwAghNhDRN8BWEZEzwI4DNml3tBrojhkD5veAO4BmGrmmHxhXWPfXnZ/bkzqCCvrWRWAHkArZZYbLekAvnNVDhbIgNpQAIeIaDmAC3g4o8UjkD14noC8x0x747wPOZvIaSWR6WXI4wmADGB0hgw47YL5IRTXlf3EE9HPyv5vKuuXg0wSWg1AZ9PeOEqy2mkA3iWipgD2QPa+c4e87+tA5ozZgIffvca2AvgJwA9EtAZyeE8K5P1LkPdGfcjv/nlWfsczxljBIoTgF7/4xS9+CQHIH4yrIbv9p0JmkTddpy7kD8hzkEn37kM2/FZDNroCAVwDEKmy7WIAH5jZtwdkQ2Q/5Fz0AvKH9RUA30M+xe4A+WNZZ7LtXMinzxFWHmc7yIaqsOKVCaCtShlekNMS7lKO37D+DQB7IYeHBKhs54+HDUZrXu/YeA2nQAaTLK0XA2CwhXUGANhhYR2t6+2jnKOjKsecDNl4ngrAx4H3MEEOc/lduVcM1zlFqccyAOEa58Ta67JVZfvqyr16HjIgYbx+HGTg7WmNupeBzBdyEnKog2HbLMgg4a+QuS7Uti0G2YviAGRj0njfqZANva8AlNLYf39L19sB18euz43R9gGQwdCaVuyrvw3XMx1AFScfewflOurMLPeFTJZ5WPl8GOqWptzLs8xdP8hA21zI3mx3le3uQAb8voQMTkyBDLyYbjsQcrYbD8jhJX9C9owzfP+dh5ydqJ6Fz92zkL02rhptewPAb5BBk0dg/rvCE3JoyiE8/P43vK5B9kTqD4CceY34xS9+8ctVLxLCluG8jDHGGGOMMcYYY47BOSUYY4wxxhhjjDHmEhyUYIwxxhhjjDHGmEtwUIIxxhhjjDHGGGMuwUEJxhhjjDHGGGOMuQQHJRhjjDHGGGOMMeYSHJRgjDHGGGOMMcaYS3BQgjHGGGOMMcYYYy7BQQnGGGOMMcYYY4y5BAclGGOMMcYYY4wx5hIclGCMMcYYY4wxxphLcFCCMcYYY4wxxhhjLsFBCcYYY4wxxhhjjLkEByUYY4wxxhhjjDHmEhyUYIwxxhhjjDHGmEtwUIIxxhhjjDHGGGMuwUEJxhhjjDHGGGOMuQQHJRhjjDHGGGOMMeYSHJRgjDHGGGOMMcaYS3BQgjHGGGOMMcYYYy7BQQnGGGOMMcYYY4y5BAclGGOMMcYYY4wx5hIclGCMMcYYY4wxxphLcFCCMcYYY4wxxhhjLsFBCcYYY4wxxhhjjLkEByUYY4wxxhhjjDHmEhyUYIwxxhhjjDHGmEtwUIIxxhhjjDHGGGMuwUEJxhhjjDHGGGOMuQQHJRhjjDHGGGOMMeYSHJRgjDHGGGOMMcaYS3BQgjHGGGOMMcYYYy7BQQnGGGOMMcYYY4y5BAclGGOMMcYYY4wx5hIclGCMMcYYY4wxxphLcFCCMcYYY4wxxhhjLsFBCcYYY4wxxhhjjLkEByUYY4wxxhhjjDHmEhyUYIwxxhhjjDHGmEtwUIIxxhhjjDHGGGMu4e7qCjBtREQAygNIcXVdGGOMMcZYvuIH4KoQQri6IowxZi8OSuR/5QHEuroSjDHGGGMsXwoGEOfqSjDGmL04KJH/pQDAlStX4O/v79KKpKWlwdvb26V1YAWDEAKJiYlIT09H2bJlITv8MGYZf88wW/E9w2xVWO6Z5ORkVKxYEeDetIyxAo6DEgWEv7+/y4MSxYoVKxT/E2fOJ4SAXq9HsWLF4O/vz0EJZjX+nmG24nuG2YrvGcYYy1840SVjjDHGGGOMMcZcgoMSjDHGGGOMMcYYcwkOSjDGGGOMMcYYY8wlOCjBGGOMMcYYY4wxl+CgBGOMMcYYY4wxxlyCgxKMMcYYY4wxxhhzCQ5KMMYYY4wxxhhjzCU4KMEYY4wxxhhjjDGXcHd1BRhjjDHGGGP5GxERgLIAavj6+lb29vb2L1asmI98mzHGchJCICsrK/3evXspiYmJVwCcBHBJCKE3Xo+DEowxxoq82Fjg7FkgIgIIDnZ1bRhjLH8hooYlS5ZsGxwcXCU0NDSwfv36Wf7+/hleXl6ZOh13vGaMqdPr9cjIyHC7c+dOsZMnTxY7e/Zsalxc3L9EtAvAFiFEFsBBCcYYY0XcwoXAkCGAXg/odMD8+cDAga6uFWOM5Q9E1KJevXoDunXr5tOyZctrTZs2jfXw8BCurhdjrGDR6/U4duyY3x9//BH6008/Vfnjjz8CiOgHIUQWByUYY4wVWbGxDwMSgPw7dCjQsSP3mGCMMSJqXq9evYHDhg2jIUOG/O3q+jDGCi6dToe6deum1K1bN6V69eqliOi5HTt2gIjWclCCMcZYkXX27MOAhEFWFnDuHAclGGNFGxH5hIWF9Xr55ZfdhwwZct7V9WGMFR7t27dPyMrKouTk5CcPHDhwiAeBMcYYK7IiIuSQDWNubkB4uGvqwxhj+Uj1Rx99NKhXr16XXV0Rxljh06FDhxs1a9b0BVCTgxKMMcaKrOBgmUPCzU3+280NmDePe0kwxpiXl1et+vXr64KCgu67ui6MscJHp9OhcePGd4KDgxvx8A3GGGNF2sCBMofEuXOyhwQHJBhjRR0ReYSFhdVv2LDhbVfXhTFWeDVv3vxGuXLlKnJQgjHGWJEXHMzBCMYYM+Lj4+PjVaFChbuurghjrPAKDQ1N8/b29iy0wzeIKJCIPiGi40QUT0T/Ka9TRPQ1EZWxoowGRLSBiC4YbR9HRPuIaBARuZmsryOiEUR0wmSf/xHRRSKaQ0SPOO+oHWPOnDkYO3Ys0tPTXV0VxhhjjDGW97yKFSvm7uvrm+nqijDGCi9fX98sDw8Pt0IZlFCCBVsBpAJoDaC8EKKsEKIsgKYATgPYTUTFNcpoAGANgLkAqhttXxFAXwBdAEwz2awPgOcBPCGEKGfYRtmuJoA0AF868FAd7tq1a3jjjTcwY8YMNGjQAIcPH3Z1lRhjjDHGWN4inU6nc3d3F66uSH5TpkyZEa6uA2OFhU6ng5ubmyiUQQkA3QBcEkJMFkLcFEI8+EIVQiQJIWYB+B+AoRplTAYwSgjxPyHEPaPt9UKIMwB6A+hh0uOiD4C3hBBXTAsTQtwFMB5ARyKiXB2dE5UpUwarV69GmTJlcOrUKTRq1AgffvghMjM5UM4YY4wxxnK6deuW+7PPPtu2VKlSr/n5+UUbvwICAsaEh4f3nzt3bqir6+kIycnJfq6uA2OFTWENStQCEGNhnS3KenaVIYRIBXAQQFWjt0MBmJ3HWQiRCeAHAPk6l0eXLl1w/PhxPPvss8jMzMTbb7+Nli1b4vx5nqKaMcYYY4xl9/LLL7e+du2a/6FDhxakpKRMN37dvn17xnvvvff7hAkTntm1a1e+H8bMGMt7hTUoEQwg3sI6VwGEaCwPEELcsbEMDwD3zKwLABBCDBNC5PuplUqXLo21a9diyZIl8Pf3x549e9C4cWPMnTsXRh1PGGOMOUFsLBATI/8yxlh+t2vXrprLly/fFBISkiMhmU6nQ58+fWLbtGlzdOnSpVVcUT/GWP5WWIMSbgCyLKyTidz3WFArowYRrSKiM0ZJLq8S0UEimkhE3loFEpEnEfkbXgBc1kWMiNCvXz8cP34cbdq0wd27d/HKK6/gySefRHy8pZgPY4wxeyxcCDz6KNC2rfy7cKGra8QYY9rS0tK8QkNDNTOkN23aNJaI+MkWYyyHfD2MoICaBGAigGOGHhFEpANQAcD7AGYAeEVj+7cAvGv6ZlpaGooVK+b42lqhdOnS+PnnnzFr1ixMmTIFv/76KyIjI/HFF1/g2WefdUmdWP4mhEBaWhrS09ORlpaGfJxGheUzaWlprq6CS8XGAoMHA4YOaXo9MGQI0LIlT1lqTlG/Z5jtCss9k5+Oo3jx4ulnzpwpXrVqVbNTiEZHR581fS8jI4P69+/fYuvWrbXu3r3rrdfrSafTCQ8Pj/t169Y99/XXX2+PiIjIVmZISMjguXPn/hQdHd0xPj6+VGZmpruPj8/devXqnV+5cuXWL7/8MmL58uUN//vvv5KZmZluHh4emY899tjxlStXxhQvXlxvKOf999+vfvTo0bLNmjW7snz58nrx8fGl7ty5UxwAPD09Mxo2bHhm7ty5f6j1/lCTmJjo/sorrzTbtm1brbS0NC8hBAGAu7t7ZsWKFa9Nnjw5plu3bv9ZKqdDhw5PtG/f/vzPP/9c7e+//340PT3d08PD436lSpWuzp07d3N8fLzXO++80yY2NrbMvXv3PHQ6nT4iIuLKkiVL/lezZs1U47KOHDniN3LkyDanTp0KzcjIKGaok6enZ0adOnXOz549e3v16tWzbfPjjz+WnTJlSqtLly6Vz8rKcgMAnU6nL1GiRNLQoUN3jR8//ozx+obz2KVLl3Nz585teOXKldIpKSm+AODr63v36aefPjBr1qwDHh4eDwJSJ0+e9HnhhRe6nj9/vqJOp3twTfR6PXl7e6e/8sorMe+///4Ja847KxyKRFCCiKoC+BVAJyHEP3aWMR5AMyFEVwurThNCHDR+QwihB3CFiIYBuExEo4QQGWa2nwoZuDDwAxDr7e0Nb2/NThZON3r0aDzzzDPo27cvDh06hD59+qB379748ssv8cgjPESQPSSEwL17ciSTt7c3ByWYTVz9XedKsbEPAxIGej0QFwdERLimTgVBUb5nmH0Kwz1z/37+GQ3cunXrYy+++OKT8+fP31yvXr1knc66ztgDBgxovn///rC1a9eubNGixW3D+/Hx8R5Dhw5t+dRTT3U/derUMuPy7ty54/Pmm2+2/+KLL35t27btTZ1Oh+vXrxfr0qVL15YtW/YAgOXLl//UoEGDZAC4cOGCd6dOnZ6fOHFinc8///zBtHJJSUmeO3furPHPP/+UnTBhwo5nn3023tBwjo+P9xg8eHCrbt26PXXw4ME11hxL796922ZkZLj/9ddfC417jWRkZNDMmTMjBgwY0KtWrVrzwsPDNaNJqampntOnT2//7rvv/m/QoEE/e3h4iIyMDHr11VcbdevWrZenp2fGhx9++FuPHj2u6nQ63L17V9ejR492gwYN6rBnz551hnIyMzPpmWee6dm9e/cD//vf/37x9fV90Iv8+vXrxV5//fUmzzzzTPe///57qeH8Xr9+vVi/fv36jBgx4veJEyeu9ff3zzKUtWrVqvIjR47sXqZMmbT+/ftfNj6Pe/bsqXL27NkyEyZM+KNbt27xHh4eQq/XY9++fQH9+/fvOnLkSJo7d+4+wzajR49uWa1atfgtW7asDQoKenAj6/V6/Pbbb6W7des24LXXXjtjvIwVboV1+EY2QogzQogwewMSShkfWxGQAOR0o+bKSAdwCcCjGuvcE0IkG14AUmyurBPVqFEDe/bswdtvvw2dTofly5ejVq1a2LJli6urxhhjBV5EBGD6W97NDQgPd019GGPMGosWLfqjRo0a8V27dn0xMDBwrPHsG6VKlRpZr169nr/88kuQ6XbHjx8Pfv/99383DkgAQLly5TJ+/PHHrQkJCY+oJcd87bXX/mzXrt1NQ2M6KCjo/kcffbT9+PHjVebNm/erISABAGFhYWkjRozYFRMTkyOfhV6v1+3du3dVr169rho/yVf2v+XChQsVzp07ZzGCpdfrsWvXrsj169dvMh3G4uHhIcaNG/dPvXr1zi5atMiqb/NWrVqdHD58+EVDnTw8PMRXX321Lykpye+ZZ5450rNnz6uGYy9evLh+0aJFMceOHctW9g8//FDO19f37meffXbEOCBhOF/ffffdzsTERL9jx449GCq+a9eukmFhYXHTpk07aghIAIC7u7vo3bt33KBBg3bMnz+/gWl9MzIyPPbs2bO6Z8+eD86jTqdDkyZNkubOnfvL+vXrs20TFxdXomvXrudMgw46nQ6dOnW6MWXKlHXG77dr165zu3btOltz7ljBVFiDEtbki3BX1ssNtTIs9aW7C8Anl/t1KQ8PD7z//vvYvXs3IiIiEBcXh/bt22PkyJG4e9dsrz3GGGMWBAcD8+fLQAQg/86bx0M3GGP5m7+/f9ayZct2xcXFzU1OTv7MePaN06dPf92zZ88jffv2ffHEiRO+xtvt3r17Tc+ePa+qlenu7i6Cg4OvHz16NEdQolmzZgmm7zVq1CjR3d09s3Hjxommy2rWrJl4+/btHHna6tSpc954SIcxDw8PUbZs2ZsHDhyw2B34zJkzPt7e3unmygKAkJCQ2xcvXgy0VBYAVK1aNcfxubu7ixIlSiTWrVs3x7KgoKD7bm5u+oSEhAdjvU+dOvVIuXLlEs3tQ6fToXTp0rePHDnyoE7PPPPMf3/++edqc9s0adLk2rVr13KcD63z2Lx589tJSUn+xu9VrFjx5urVq6uZC/i88cYb/xgHLLZs2fK/LVu2/M9cvVjBV1iHb8QCKGthnfIALmssTyQiXwszcJiWkQrAy8J+vSEDEwVekyZNcPjwYYwbNw5fffUVvvzyS/z2229YtmwZGjZs6OrqMcZYgTRwINCxI3DunOwhYSkgERsLnD0re1lw8IIxlt+UKlXq/vjx488cOXKkzEcffVRvxYoVOw3Lrly54jV06NDHT548GZqRkeFhum16erpnSkrKEdP3/f39czxY9Pf3z3J3d89SGzri4+OTlZmZmaPd4+7ubjaIAACenp73k5OTc9TLVGJiYrEbN26U8vPziza3TlZWllufPn22WyoLALy9vVUfnBYrVizLx8dHdZm7u3vW3bt33QDcB4DU1NRiO3bsqOfn51fD3H4yMzPdjMvT6XSYMWNG1YULFza7fft2gCEHhYFer6fAwMAcvbi1zqO7u7swLWf27Nk7XnjhhScbNGjwil6vz3bB/Pz8Ul966aXdU6dOPWauTFb4FNagxHEAfQDM1ljncWU9rTIeB7BebSER+QBoAMA42csFABEAVJPYEJEHgEoA/tXYb4Hi4+ODOXPmoGvXrujfvz/OnDmDpk2b4u2338bEiRNdlpyTMcYKsuBg6wIMCxfKRJh6vRz2MX++DGowxlheuXz5stfmzZvLDB48WPP3bZ06da798ssv1Yzf69OnT+cqVapc++mnn74qUaJEjsZ2y5YtrRk6nS+UKVPm+tWrV+e6uh7G2rRpc3Dz5s2brF1/w4YNZWbPnt122bJl37dv3z7BNMBz8OBB/65du76Y23qFh4en7d+/f63p+3q9Hnv27Ans1q1bn/bt28e1bdv2Zm73xQqGwjp84ycAwUQ0mYhKklGWPWWqzdcAPAlgvkYZkwDMJKInicjTaHsdEYUD+A7AWiHENaNt5gL4lIgiyCSzHxEFAvgcwC9CiHu5PL58p2PHjjhx4gR69uyJrKwsTJ48Gc2bN8fp02ZTbDDGGMuF2NiHAQlA/h06VL7PGGN55cCBA4HTp09vZWk9IoLpE/MzZ848umjRol1qAQkAOdbPa/fu3Svm7+9vLjn9A/7+/vfT09M9tdbZt29fwN69ewMcVzttxYsXv5+amqpZp1WrVpW/devWg4fUv/zyy6OtW7c+0bFjxxwBCQDIyspy6vXQ6XRo3rx5YlRU1NnNmzdz378ipFAGJYQQWQDaQQ6V2AHgKhH9R0T/AdgHIBJACyFEKgAQUWsiOkdE/kZlHAbwLIChAP422j4WwErI2TzGmez3F8jAw0oAcYZtlO32A7gDYKQzj92VSpQoge+//x4rVqxAYGAg9u/fj3r16uHLL7+EXq/ZO44xxpiNzp59GJAwyMqSwz4YYyyv1K9fP/HatWsl09PTNdsVJ0+eLF2xYsVbxu8JIUin0wm19TMyMujvv/8OcWRdbZGRkUHXrl0rGRUVlS0Jp06n05v+rq1evXpqWlqa14ULF8wmxZw4cWLzDRs25NnxVK9ePfHff/8to/UbfNSoUc9cvHixuOHfWVlZOiJSvR4A8MMPP4Q6om5hYWEDjIMhKoSzAyAsfymUQQkAEEIkCSHGCSEihRDlhBBllVc1IcRQIcR/RutuF0KEK7NdGJdxWAjRVZm5w7B9eSFEQyHEfCX4YbrfVUKIKGW9skavCCHEm0KIfDWbhjO88MILOH78ONq3b4/09HSMHDkSHTt2RCw/vmOMMYfhmToYY/lBaGhoerVq1f599tln28fHx+fIv5CZmUnz588P/eWXXxq88cYbR4yXhYWFxY0YMaJRZmYmGa//448/lm3atOlz7u7uOX5r54X4+HiP55577vFKlSpdNZ3Cs0KFCtcmT55c0/g9nU6HVq1aHX3uueeeMk3mmZmZSV9++WXYoUOHInr37n0hL+oPAN27d78qhKA+ffo8ZpwAEwASExPdBw8e3NjHxyfNeKaSdu3aXd6xY0fNgwcPZktMeeXKFc/Ro0fX+/HHH+s5om4lSpRIiY6ObmhaLwD4+++/fQ4ePBjRrl27OEfsixUMhTWnBHOx4OBgbNq0CV9//TXeeOMNbNmyBbVq1cKcOXPwwgsvwGR0C2OMMRsZZuoYOlT2kHBzA6ZOlT0oDMsZYywvrFu3buPgwYNb1a5de6jpMAY3N7essmXLJsyZM2etcQMYABYvXrxx8ODBnUqWLNlcr9frdDqd3s/PLzU4OPjG6NGj96xYsaKm6fAJHx+fu15eXqrBCn9/f9WHf35+fpk+Pj45Zsjbtm1bAz8/v0jj94hIeHh43G/UqNGZdevWbTDdZu7cuRtfeeWVJ2fOnNnx/fffXz9y5MjzALBixYotw4YNa9G2bduX09LSHiS+d3Nzy6pYseK1uXPnrq5Zs2aqWv1Mju+euSEjPj4+6QEBAffNLMt2Xjw8PMT69etXjhw5sm2VKlVG3L9/391wfO7u7pm1a9e+sH79+jXGZfTq1evqvn379nTu3LlvWlqalxCCPD0975UqVSqpfv36F5cvX76uT58+zxhvExAQcM/Hx0dzaHpAQEC26z5v3rzNffv27RoSEvKYm5tbtq4cnp6eGS+++OLuTp063TC8Z5gOlGfgKLxICLM9dFg+oAwpSUpKSoK/v7/F9Z0pLS0N3t4Wp2rO4cyZM+jbty/2798PAHj++efx1VdfoWTJko6uIssnhBBITExEWloaypUrx0EoZjV7v2eKsthYOWTjwAHgzTeLXtJLvmeYrQrLPZOcnIyAgAAACDDt7ZtbRFQ+Kipq6qJFi25ERkZqzURXYEVHR9c9ceJE2U2bNlmdCJIx5nidOnWqWWiHb7D8o2rVqvjzzz8xefJkuLm5YfXq1ahVqxb4/wGMMZZ7wcFyyIYhIAFw0kvGGGOMFRwclGB5wt3dHZMmTcLevXtRrVo1xMfH44knnsArr7yC1FSLPdkYY4xp4KSXjDHGGCuoOCjB8lRUVBQOHTqEkSPlJCRz585F3bp1sXfvXhfXjDHGCi5OeskYY7bx9/fPKF68uMXpPhljzsdBCZbnvL29MWvWLGzZsgXBwcE4d+4cmjdvjrfffhsZGfz/BsYYs5Uh6aWbm/y3mxswbx4nu2SMMXMmTZp06scff9zm6nowxjgowVzo8ccfx/Hjx9GnTx/o9Xp8+OGHaNKkCU6ePOnqqjHGWIEzcCBw6RIQEyP/FoUkl4wxxhgr+DgowVwqMDAQy5Ytw5o1a1CiRAkcPnwYDRo0wIwZM6A3HSDNGGNMU3Aw0Lo195BgjDHGWMHBQQmWLzz33HM4ceIEnnjiCdy7dw9jx47F448/jn///dfVVWOMFTCxsbK3AM88wRhjjDGW/3FQguUb5cqVwy+//IK5c+eiePHi2L59O2rXro0lS5ZACOHq6jHGCoCFC4FHHwXatpV/Fy50dY0YY4wxxpgWDkqwfIWIMHToUBw9ehRNmzZFcnIyXn75ZXTv3h03btxwdfUYY/lYbCwwZMjDqTH1emDoUO4xwRhjBdG5c+e827Zt22XYsGGNXF0XxphzcVCC5Uvh4eH4448/8NFHH6FYsWJYt24dIiMjsXHjRldXjTGWT509+zAgYZCVBZw755r6MMZYUbJnz55AIno3IiLiZXPrvPfeezUiIiJe9vb2ftPDw2NC+fLlh7300kvN7969m6NNEh4ennbkyJHwJUuWtFVbzhgrPPgDzvItd3d3vPXWW9i3bx9q1qyJ69ev46mnnsLgwYORkpLi6uoxxvKZiAhAZ/J/NTc3IDzcNfVhjDH2UKdOnTpNnjy5x4ULFypWqlQpLjIy8tzt27cDli5d2q5WrVov3bp1y910m4YNG55OT0/3XLBgQSVX1Jkxljc4KMHyvbp16+LAgQMYO3YsiAjffPMN6tSpg127drm6aoyxfCQ4GJg/XwYiAPl33jyeiYIxxlzto48+qrZ58+bGHh4eGatWrfrm1KlT3x06dGj1sWPHvixXrtz1CxcuhPTt27et6XbdunU7DQDr16+vlts6LF++vEKNGjX6BAYGjvbz84s2vEqUKDGqSZMmz+7bty/AGWW89dZbtStUqDDM399/rGF9f3//sWXKlBkxYMCApunp6RbbYxkZGVSvXr2e7733Xg17j9/YtWvXPCIjI18cNWpUfeP3L1++7PXUU0+1L1eu3CvG9S1TpsyItm3bPnny5Ekfa8q355jt2ffJkyd9WrVq9VSJEiVGqV2PAwcO+BvWnTVrVmV3d/e3Z82aVdmec2ar5s2bP7NmzZpy1qybkJBQLCQkZLCz65SfcVCCFQheXl6YPn06YmJi8Oijj+LixYto2bIl3nzzTdy7d8/V1WOM5RMDBwKXLsnZNy5dkv9mjDHmWvPmzXsMALp3777rueeeize8HxERcffDDz/8BQB+++23RleuXPE03m7AgAH/ent7px08eLBqbqaKP3jwoP+IESOeHzZs2J7r16/PTElJmW54xcbGftmqVavzzzzzzItaw0TsKWP+/PmhixYtarFs2bI1ycnJnxnWT05O/mzbtm2LDxw4EDpq1KgoS/Xv2bNnm+PHj0fcuXPHw+6ToIiLi/Ns1qxZ76tXrwalpqY+KC8jI4OaN2/ez9vbO2Pnzp2LExMTH9T3wIED31SuXDmhVatWAxMSEopplW/PMdu77x49enQrX7580oULF+YYX4+rV69+2axZs4vdu3fvmZmZSQBQqlSp9KCgoIRSpUql5/YcWuOxxx678MknnzS3Zt133323Tmho6DVn1yk/46AEK1BatWqFY8eOoX///hBC4JNPPkGjRo1w7NgxV1eNMZZPBAcDrVtzDwnGGMsPDh8+7Hf58uXyADBixIjjpsv79+9/OSAgIDkzM9Nt3rx5EcbLPDw8RL169f5JTk72W7lyZQV76/DFF1/U6tChw+GRI0ee9/DwyDalW/HixfXTpk07GhQUdGvJkiWPOrKMjRs3hvfo0eOvtm3b3jQtr2bNmqkzZsz4bdOmTbW16j516tSq+/bti3jssceOWH3AZty6dcu9efPmfaOioi60a9cuW3kff/xx9dKlSyeuXr16R3h4eJrOaDxkxYoV7y1YsOCv+vXrn33zzTcbaO3DnmO2Z99XrlzxjI+PL7V8+fI/AgMDM43L8/Ly0s+YMeOwm5tb1tatW0sCQO/eveOuXr06t3fv3nFWnaxcevvtt0+eP38+eO/evZo9cDIzM2nNmjVNJkyYsCcv6pVfcVCCFTj+/v749ttvsW7dOpQuXRrHjh1DVFQUpk2bhqysLFdXjzHGGGOMKbZs2VIOALy9vdOaN2+eqLZOpUqVrgLA0aNHc3R379y582kAWL16td1DOK5cuRJYpUqVBK11QkJCbp45c+YRR5bRpEmT2J49e14wt37dunWTb9++bbbRGhMTU+LTTz99YuXKlas9PT0zza1nUL9+/edjYmJKmFuu1+vppZde2rNq1aodpsuOHz8e1KhRo0ta5bdt2/bCP//8U0ZrHXuO2Z59nzt3zicgIOCOzjSZlJGSJUsmnzlzxuKwHGfw9fXN6tKly/4pU6Y00Vrv008/rRIUFHS7U6dORXqaQQ5KsALrmWeewYkTJ9C1a1fcv38f48ePR+vWrXHhgtnvQcZYLsTGymERPMUmY4wxa507dy4QAB555JEkc+sEBQUlAcDVq1cDTZcNHTr0fLFixTL37t1rd1Di3r17xYoXL67ZqPfy8srUGh5hTxkTJkw43aJFi9vm1v/999+DgoKCbqktu379erHevXv3HDdu3K8tW7Y0W4axlJSU4omJiWaPoVSpUvcnT558Um3ZtWvX/CtUqKCZSb5SpUopN27c0Gzk23PM9uy7adOmiampqd6G4Rlqbt686V+nTp0HdSlbtuxwrX0YK1u27PA1a9aUCw8P72/IIVKhQoWhvXr1apmZmUmvvvpqVOXKlfsHBASM8fX1jS5VqtTIAQMGNDUeZjRlypSDu3btirx8+bKXuf188803zYYPH/6ntfUqrDgowQq0oKAg/PTTT1i4cCF8fX2xa9cu1KlTB9988w2EEJYLYIxZZeFC4NFHgbZt5d+FC11dI8YYYwXBnTt3PAHA09Pzvrl1ihcvngEAaWlpnqbLSpUqdb969ernr1+/Xmrbtm0l7amDl5fX/dTUVM1cCOnp6Tlm/3B0GcYOHz7sFx0d3aVfv35/mS7T6/Xo2rXrUw0bNvxn/PjxZ6wtMzeysrJ0bm5umj+ePTw89FlZWXa3H80dsz379vLy0leuXDmue/fubS9duuRlHAxITk52Gz9+fO2bN28GNm/e/EFQIikpyR9WSkhIKDl9+vRmq1at+iExMfHzlJSU6Tt37lx66NChSlFRUT0PHz4cvHnz5u+TkpJm3LlzZ/qmTZsW/+9//6s3d+7cBzPFhIaGpjdr1uzkpEmT6qvtY+XKlRXS09M9hg0bdtHaehVWHJRgBR4RYcCAATh27Bgee+wx3LlzB4MHD8bTTz+Na9eKdM4YxhwiNhYYMgQw/P9erweGDuUeE4wxxvJGu3btTgPA4sWLs/WWUGZ5GGpp+4oVK94+ffp0Ka11Ll26VNrZZQAy4BAdHV23RYsWwzp37nxk0qRJp0zXeeWVVxrdunXLb9WqVTGWyisIrDlme7z//vt//Pbbbw0rVar0pq+v7zg/P79oX1/f6MDAwImfffZZ1y+++GKNu7u7XU8ps7KydDNnztzaoEGDZMN7YWFhaSNGjNh16tSpyuvXr/8lPDw8zbAsKioquUePHn/9/PPPVYzLeeedd/Zu2LChkVoS1RkzZjTt16/fHq0hKEUFnwFWaFSqVAkxMTH49NNP4eHhgZ9//hmRkZFYt26dq6vGWIF29uzDgIRBVhZw7pxt5fDwD8YYK3p8fX3vAXL4g7l17t696wEA3t7eqlOqVa5cOQkA4uPjsw0dmDp16rG4uLh5luowZsyYY1u3bq07derUqrdu3crWmyEuLs5zxIgRUZcuXSrv7DK2bdtWskaNGn3Xrl3bYMmSJd8tWLAgRy+JxYsXV1yzZk2zdevWrfXy8tKccmT+/PmhxlNhXrx4sWLv3r37Gb83YMCAplplmLNly5aSJUuWHGVv7xQDa47Znn2fOXOm+IsvvvjCm2++ueHatWsf3b1795OUlJTpd+7cmf7ff/9NnThx4o+fffZZizt37rjZU293d/fMxo0bJ5q+X7NmzcTAwMCkUqVK5ej5Ex4enpiQkOBn/F7z5s0Tw8LC4j744IOaxu/v2bMn8Pz588ETJ05UHU5T1HBQghUqbm5uiI6OxoEDB1CnTh0kJCTg2Wefxcsvv4ykJLNDGRljGiIiANMgvpsbEB5ufRk8/IMxxoqmypUrJwJAYmKi2VwE169fDwCAcuXKJaot37BhQ1UAePLJJ/+xpw61a9e+s3Tp0hWrVq2qGxERMdzQYPf39x/bvHnzPgkJCT7t2rU77KwyMjIyqGfPnq2effbZfl26dDl+7ty5b42nRjU4ceKE7+jRo7vPmDHjh5o1a6ZaOq4hQ4ZcMp4Ks1KlSleWL1++1Pi9b7/91q5ZHdq1a3fz5s2bs9Rm0bCGtcds775nzJgR2bhx49PvvffeqaCgoGwBgqCgoPvvvffeqYoVK9786KOPathTf3d39yy1Hgw+Pj5ZxYoVU80t4u3tnXX//v0cQ3hGjx7959KlS5uZ5Jto3LVr132+vr6cpR+A1eOeGCtIatWqhb/++gvvvfcePvnkEyxZsgQxMTFYsmQJWrdu7erqMVagBAcD8+fLIRtZWTIgMW+e9VNumhv+0bEjT9vJCq7YWNmLKCKC72PGtDz++OP/AcDdu3e9d+/eHag2A8fFixfLA0DdunVVG6379u2r6unpeW/QoEF2j73v2rXrta5du64yt/z5559v7Ywyrl275tG+ffvubm5u+mPHjn0dEhKSrrZtenq67plnnnmue/fue19++eUrluriaG5ubvrMzEzNB9YZGRk6Nzc3zd4bgPXHnJt9nz9/vlRUVJRm38saNWpcO3ToUAUAOaaizUu9e/eOmzRpUsb8+fNDhw0bduny5ctef/75Z83jx49/5cp65SfcU4IVWp6enpg6dSr++OMPhIWF4fLly2jTpg3GjBmD9HTN70bGmImBA4FLl+Twi0uX5L+t5ajhH67Cw06YKe75w5j1GjRokBwSEnIVAObMmVPLdPmiRYtCkpKS/N3d3bOGDh161nT5unXryt6+fTuwVq1a5+x9qhwdHV134cKFIVrr3Lt3z93Dw8Ns+faW8cILL3QoXbp08sGDB1dpNc6XLVtW8cqVK+W///77FsbDLwyvrVu3Npg9e3anWrVqvahVB3uVLVs2+erVq75a61y8eNGvdOnSFrseW3vMudm3NcERnU6H3CTmdKSBAwfumTNnTjMAmDRpUv1mzZqdtObcFBX54iIx5kzNmzfH0aNHMXjwYADA559/jgYNGuDwYc1eeowxE8HBQOvWtj8VdsTwD1fhxiczxYlfGbPd0KFDdwLADz/80GLt2rXlDO+fO3fOe+LEiU8CQIcOHfZVrFgxR06JlStXVgOATp06nbZ3/wkJCcW3bNkSqrVObGxsifDwcLNTWdpTRkxMTIkjR46Er1mzZrOlZIaDBw/+9969ex/duXNnuvHwC8OrUaNGJydNmvTT8ePHV5gro3jx4ul+fn5mZznRUqtWrWt79+6tpLVOTExMpSpVqmhmkbflmHOz75CQkNt///23ZmLR06dPlw4ODrZqOlVni46OPnPt2rUSGzZsKLNhw4ZGkyZNsphboyjhoAQrEnx9fTF//nxs3LgRZcqUwalTp9CoUSN8+OGHyMzUnHKaMZZLhuEfbkqqKVuHf7gKNz6ZmoLe84cxV5gwYcLpDh06/JWRkeHRq1evQTVr1uzdoEGD52vVqjUyPj4+qFKlSleWLVu2TW3b3bt3V3Nzc8saNmxYjl4U1urVq9fZ3377rd5PP/1URm/yAc7IyKD333+/+sWLF8v16dPnX0eWsX379nI1atS4WKJEiTz5sXn06NHv27VrZ1cOiDfffPP0rVu3/Hv06NH63Llz3sbHGBcX5zl06NBGBw8erDJ16tSDWuXYc8z27HvcuHHHd+7cWWvWrFmVMzIyyLi8jIwMmjlzZvj27dtrjx492qVDNww8PDxEjx499vbv379X5cqVY5s2bZro6jrlJ5xTghUpTz75JE6cOIFhw4bhhx9+wNtvv42NGzdi6dKliIiIcHX1GCvwzI2zHzhQ5pA4d072kMjvAQlAu/FZEOrPnMPQ88f43igoPX8Yc6XNmzdvevfdd68sX7684fnz5yvq9Xq3kiVL3mrfvv2ur776aq/a0Iw9e/YEXr16tUz16tXPV6hQIUcvirfeeqv20qVLm1qagaNTp043JkyY8L9Ro0Y91a9fvwAhxINGrJubW1bFihWvfffddysMCRPVyrW1DABISEjw3r9/f00/Pz+zPzLd3Nyytm/f/k3dunVTtI7B19c33d/fP0NrHVv4+vre8/Pze3BOPTw8xO7du5cOHz68ZYsWLfrfvXvX23CM3t7e6TVr1ry0ffv2b42PT+082XPM9uw7IiLi7rfffrty4sSJ7d59992uWVlZD2bZ0Ol0+goVKlyfN2/e97Vr175jz/nx9/dXvR5+fn6ZPj4+aWrL/P39M3x8fMwOyZg8efLRNWvWNBk3btxue+pUmJEQdk3dyvIIEfkDSEpKSoK/v79L65KWlgZvb2+X1sFRhBD47rvv8OqrryI5ORnFixfH9OnTMWzYMBCR5QKYJiEEEhMTkZaWhnLlyvE5LSIWLnzYs0Cnk70jbMk9AeSv75nYWDlkw7TxeekSByXyE1fcMwsX5kz8auu9zlwnP33P5EZycjICAgIAIEAIkezIsomofFRU1NRFixbdiIyMtKpRt2fPnsBmzZqNCg8P//fs2bOLHVGPQYMGNVm4cGHHESNG/DJ79uwDjiiTFV3e3t7j09LSPnZ1PVh2nTp1qsnDN1iRRETo27cvjh8/jjZt2uDu3bsYPnw4OnfujKtXr7q6eowVOIVxqENBHXZSkGglEc3PCUZzk/iVMWa9HTt2VCMiDBkyxO58EowBgF6vBxFZTI7JXIODEqxICwkJwZYtW/D555/D09MTmzZtQq1atbB69WpXV42xAkVrqEN+blxawo1P59FKIloQEozam/iVMWadc+fOeV+4cCEkJCQkzt4u+IwZTJkypUaFChWuu7oeTB0HJViRp9Pp8Prrr+PQoUOoX78+bt26hZ49e6J37964fTtfJOxlLN8zN8PG/v35v3Fpib2Nz4IcjHE2rZ41hbHXDWPMduHh4WlZWVlTLl269I2r68IKrq+//rpSQEDAmBUrVjT86quvNrq6PkwdByUYU9SoUQN79uzBO++8Azc3N6xYsQK1atXCli1bXF01xvI9taEOH38MjB9fNBuXBeFJvytp9azh2S0YY4w5yiuvvHIxKSlpxj///LOkffv2Ca6uD1PHQQnGjHh4eGDKlCnYvXs3IiIiEBcXh/bt22PkyJG4e/euq6vHWL5mOtShQYOi2bjMT0/682tvDXM9a8LDtZcxxvKvChUqpPfo0WPH008/fcTVdWGMFSyFNihBRIFE9AkRHSeieCL6T3mdIqKviaiMFWU0IKINRHTBaPs4ItpHRIOIyM1k/clElGS0rtrrD+cdNXOUxo0b4/Dhwxg+fDgA4Msvv0T9+vWxf/9+F9eMsfzNeKhDUW1c5pcn/fm5t4ZWElFOMMpYwRQSEpK+evXq7dOnTz/i6rowxgqWQhmUUIIFWwGkAmgNoLwQoqwQoiyApgBOA9hNRMU1ymgAYA2AuQCqG21fEUBfAF0ATDPZLADAKMO6Zl4tHXy4zEl8fHwwZ84cbNq0CeXLl8eZM2fQtGlTvPfee7h//77lAhgr4opq4zI/BGPyU28Nc7SSiHKCUcYYY6zoKJRBCQDdAFwSQkwWQtwUQgjDAiFEkhBiFoD/ARiqUcZkyADD/4QQ94y21wshzgDoDaCHNT0uWMHWsWNHHD9+HL169UJWVhYmT56MZs2a4fRpnp2KMUuKYuMyPwRj8ktvDUu0kojy7BaMMcZY0VBYgxK1AMRYWGeLsp5dZQghUgEcBFDV5tqxAqdEiRJYuXIlVq5cicDAQBw4cAD16tXDF198Ab3pL3/GWDZFsXHp6mBMfuitwRhjjDFmjcIalAgGEG9hnasAQjSWBwghLM2JbKkMVsj06tULJ06cQIcOHZCeno5Ro0ahY8eOuHLliqurxpjL5Ndkio5kzzG6MhiTH3prMMYYY4xZo7AGJdwAZFlYJxOAey73o1ZGayJaT0RnieiaSXLMEUSU230yF6tQoQI2bdqE2bNnw9vbG1u2bEGtWrWwfPlyGI0UYkxVYWvA5+dkio6S347R2nvI1b01GGOMMcasUViDEq5yBrLnxBwAjQAYkmOGAHgBQCcAb2gVQESeRORveAHwc3KdmR2ICCNGjMDhw4fRqFEjJCUloU+fPujZsydu3rzp6uqxfCq/NW5zqyAkU8yt/HaMtt5DRXHoDGOMMcYKliLx1J6IqgL4FUAnIcQ/dpYxHkAzIURXc+sIIb4G8LXK+1kAzhNRfwCHAEzV2NVbAN41fTMtLQ3FihWzud6OlJaW5tL950chISHYsmULPv30U0ydOhVr1qzBzp078fXXX6Njx46urp7LCCGQlpaG9PR0pKWlgYhcXSWXi40FBg8GDJ1p9HrZ2G3ZsuA2GE+cUE+mePIkULKkfWWmpaUhNhY4fx6oXNm+c5Pb7Y054xjtVRjvIUfg/zcxWxWWe6awHIc5586d8x4yZMjjVapUuT537tx9rq4PY8x5ikRQQpktIyyXZXzsgHokEJEHEXkJIdLNrDYVwAyjf/sBiPX29oa3t3duq5Br+aEO+dGUKVPQtWtX9O3bF6dPn0a3bt0wbNgwfPrpp/D19XV19fKcEAL37slJa7y9vTkoAdmgNB3do9cDcXEyKWFBFBkpkykaN9rd3ICaNQF7vyoWLwZefdUber0se/5824YdLFz4sGeDPdubcsYxxsbK2TEiImwLJhS0e8je47QH/7+J2aow3DP5bXryPXv2BDZr1mxUeHj4v2fPnl1svGzLli0l16xZU/nEiRPlL1y4UO769eul9Xo99erVK2blypV/qJUXHh6eduTIkfA9e/ZEzpgx40Dx4sU5szhjhVRhHb5hTb4Id2W93LCnjHQAXuYWCiHuCSGSDS8AKbmpIMs7UVFROHToEEaNGgUAmDt3LurWrYs9e/a4uGbMFUzH/RfG2RAcnUwxNhYYMcL+oRLOGmoxZszDa5fbY8zNEJ6CdA/l5jgLW94Vxhgwffr0hvPnz3/izz//rPPff/8F6fV6q55WNGzY8HR6errnggULKjm7jowx1ymsQYlYAGUtrFMewGWN5YlEZOkRd7YyiGgaEXla2MYTMjDBCiFvb2/MnDkTW7ZsQXBwMM6fP48WLVpg4sSJyMjIcHX1WB5Ra5AV1tkQ7E2mqNbwPHs2Z0+ArCzg3Dnryjx7Vn2ohbXbmzJcx+nT5b+jo3OXMDK3QZOCcg/l5jgLW94VxphUrVq1608++eSfEyZM+PG3336b07Rp02PWbNetW7fTALB+/fpqua3D7Nmzw8LCwgb4+/uP9fX1jfbz84v29/cfGxQU9Grfvn1b3L17N1u76PLly15PPfVU+3Llyr3i7+8/1s/PL9rPzy+6TJkyI9q2bfvkyZMnfazZ71dffVUpLCxsQEBAwBhDGX5+ftGBgYGja9eu/cKmTZtK53abt956q3aFChWGGdfT399/bJkyZUYMGDCgaXp6eq7bfLbuY/ny5RVq1KjRJzAwcLTxMZQoUWJUkyZNnt23b1+ANfvNi3Nha11nzZpV2d3d/e1Zs2ZVtudc2qJ58+bPrFmzppw16yYkJBQLCQkZ7Ow6OUNhDUocB/C4hXUeV9azqwwi8gHQADK5pUEzAFU0tnkEQKbG0A1WSDz++OM4fvw4+vTpA71ej48++ghNmjTByZMnXV015mRaDbLCOhuCrckUzTU8IyIA05E+tvQEcGRPArXr+PnntpdjzBFBE0ffQ87olWDvcTo7qSj3wGDMdWbOnHlo48aNv3/44YfH27dvn0BEVk1XNmDAgH+9vb3TDh48WFVv+sVigz179gS+/fbbT7///vubExMTP7tz5870lJSU6cnJyZ/t3Lnz25MnT5YfNmxYU8P6GRkZ1Lx5837e3t4ZO3fuXJyYmPhZSkrK9JSUlOkHDhz4pnLlygmtWrUamJCQoJnwLSYmpoRhv7dv355hKCMlJWX69evXZ3br1u1Y3759eyUnJ7vZu838+fNDFy1a1GLZsmVrkpOTH9QzOTn5s23bti0+cOBA6KhRo6LsPnl27OPgwYP+I0aMeH7YsGF7rl+/PtP4GGJjY79s1arV+WeeeeZF00BQbs+fPefCnrqWKlUqPSgoKKFUqVJOb9M99thjFz755JPm1qz77rvv1gkNDb3m7Do5Q2ENSvwEIJiIJhNRSTIa0K7MavEagCcBzNcoYxKAmUT0pHHvByLSEVE4gO8ArBVCGF/4dQA+JqLypoURURkA8wB8k5sDYwVHYGAgli1bhjVr1qBkyZI4fPgwGjRogBkzZiA3/2Nl+ZulBllRnw1Bq+EZHAzMmWN/TwBH9iRwdK8LwHFBE0fdQ87qlWAujY6PhWeKzjjnBrk9Vg5oMOYaHh4eol69ev8kJyf7rVy5soK95axfvz6kYcOGZ3r37h2nM/kirlq16t2ZM2f+HhMTU9Pw3scff1y9dOnSiatXr94RHh6eZrxNxYoV7y1YsOCv+vXrn33zzTcbaO33m2++qfnEE08cVNuvh4eHmDx58skSJUok/fbbb0H2brNx48bwHj16/NW2bdsc07/VrFkzdcaMGb9t2rSptjXnyRxb9/HFF1/U6tChw+GRI0ee9/DwyBaAKl68uH7atGlHg4KCbi1ZsuRRrf3mxbmwp669e/eOu3r16tzevXvHadXfEd5+++2T58+fD967d69mz5LMzExas2ZNkwkTJhTIceOFMiihzHbRDoA3gB0ArhLRf0T0H4B9ACIBtBBCpAIAEbUmonPKFJyGMg4DeBbAUAB/G20fC2Al5Gwe40x2PUvZ3zYiijdsQ0TxAGIAHID2zBusEHruuedw/PhxdO7cGffu3cPYsWPRtm1b/Pvvv66uGnOCgjTu3xXMNTwNqVdefjl3PQEc1ZPAGdcxPw2/cGavhIsX1d+/dEl7uwMHcr7niM9Obo+Vh5Qw5lqdO3c+DQCrV6+2ewhHhw4d4l5//XWVbxmpdu3aKcnJyQ9CqsePHw9q1KjRJa0y27Zte+Gff/4po7VOXFxcYOXKlW9prdO6devTbm5uwt5tmjRpEtuzZ88L5tatW7du8u3btzUbtPXr138+JiamhLnltu7jypUrgVWqVEnQ2mdISMjNM2fOPKK1Tl6cC0fV1Vl8fX2zunTpsn/KlClNtNb79NNPqwQFBd3u1KnTjbyqmyMV2tk3hBBJkEED08CB2rrbAeT42aMEJsxOAaqyfhaAT5QXYw+UK1cOGzduxIIFCzBmzBjs2LEDtWrVwhdffIGXXnqJZ6coRAwNz6FDZWM7v477dxVDY980MNGzJ5CcDLz4ojxXuTlfud3eUIYzruPAgUDHjvLpf3i46+4LrV4JrgqSjB+f8/2PP859fXJzrOYCGh078measbwydOjQ85MnT87cu3dvNQBb7SlD7cm5saNHj/o/+uij8YZ/X7t2zb927dqa3eArVaqUcuPGDc3G/v379928vLyytNaZN29etulObd1mwoQJp7XW/f3334OCgoI0G/YpKSnFExMTPcwtt3Uf9+7dK1a8eHHNyQC8vLwy79y5Y3afQN6cC3vrWrZs2eH//fffV1rbGdb78ssv17311ludEhISArOystz8/f1THnvssb+/++67na+//nqDX3/9tVZCQsIjWVlZOi8vr4yuXbvu/+abb/YYeodMmTLlYO3atUdcvnx5R0hIiOqQkW+++abZ2LFjt1uqT35VKHtKMJYfERGGDBmCo0ePolmzZkhJSUH//v3RvXt33LhRIIOazIzCmjsCyH03dtPeAgZCODZ/gCM46zrmhyE8zuzR06xZztwgOh3QtKn6+oB64AAAonI1ClrKzbE6c0gJY8w6pUqVul+9evXz169fL7Vt27aSjixbr9fj2LFjvq+//nr755577qjh/aysLJ1x7wU1Hh4e+qysLIttqVu3bnm1b9/+iQoVKgw1TqJYtmzZ4a1bt37qyJEjfo7YRs3hw4f9oqOju/Tr1+8va9a3h9o+vLy87qempmrm20hPT7fq4bizz4W9dU1KSvJXW9dUQkJCyenTpzdbtWrVD4mJiZ+npKRM37lz59JDhw5VioqK6nn48OHgzZs3f5+UlDTjzp070zdt2rT4f//7X725c+c+mHEmNDQ0vVmzZicnTZpUX20fK1eurJCenu4xbNgwM30V8z8OSjCWxypXrow//vgDH330EYoVK4Z169YhMjISP//8s6urxhwoPzQ8Hc1R3dgHDgRWrMj5flYWcMFsp0vXKIzXETA/lATIfe6E4GBgwYLsZc+fr30OnRkkyc2wGR6OxVj+0K5du9MAsHjx4mxDOJSZFobaUtaBAwf8DbMs+Pj4jK9Tp85YPz+/tAkTJvztyDobLF26tEX79u3PHz169FtDAsWkpKTp+/bt+zYiIuJ6586d+5jOCGHPNsb0ej2io6PrtmjRYljnzp2PTJo06ZSjj0trHxUrVrx9+vTpUlrbX7p0KcesI2qcfS4cWVc1WVlZupkzZ25t0KBBsuG9sLCwtBEjRuw6depU5fXr1/8SHh6eZlgWFRWV3KNHj79+/vnnbJMnvPPOO3s3bNjQSC056IwZM5r269dvj2nejYKk4NacsQLMzc0Nb731Fvbt24eaNWvi+vXr6Nq1KwYNGoSUlBRXV4+xHBydg6BZM/XGXlhY7uppq6KcwNC0JwjwMOhUsSLw2muOK9tSLxNn59uwt9eLPfUqyvcUY85SuXLlJACIj4/PNlxi6tSpx+Li4ubZUlZUVFSy4Yl1amrqx8ePH//M29s748knn+xobpstW7aULFmy5Ch7emq0atXqxLhx4/4pVarUfcN7Op0OISEh6QsWLPirRIkSyYsWLXo0t9sYbNu2rWSNGjX6rl27tsGSJUu+W7BgQY5eEvPnzw817nVw8eLFir179+5n/N6AAQPM9m+ztI8xY8Yc27p1a92pU6dWvXXrVrZeBnFxcZ4jRoyIunTpUo6JAdQ4+1w4sq5q3N3dMxs3bpxo+n7NmjUTAwMDk4yPyyA8PDwxISEhWw+Q5s2bJ4aFhcV98MEHNY3f37NnT+D58+eDJ06cWKCn+OOgBGMuVLduXRw4cADR0dEgIixcuBB16tTBzp07XV01xrJxdDf2/JD0kRMYPuwJAmQPOgHA7NlAw4a5L9vaa+rsYU/29nqxpV58TzHmHBs2bKgKAE8++eQ/jixXp9MhMjLyzs8//7z58OHD4SdOnFCdP6hdu3Y3b968OctSbgo1VatW1UyiWKlSpeunT5/OlkTRnm0yMjKoZ8+erZ599tl+Xbp0OX7u3Llvn3vuuXi17YcMGXLJeOrLSpUqXVm+fPlS4/e+/fbbHLM4WLuP2rVr31m6dOmKVatW1Y2IiBhuCHT4+/uPbd68eZ+EhASfdu3aHdY6xrw6F46sqxp3d/cstR4MPj4+WcWKFVPNZeHt7Z11//79HENGRo8e/efSpUubGc/iN2XKlMZdu3bd5+vrq5l7I78rtIkuGSsovLy88Omnn6JLly546aWXcPHiRbRq1QpvvPEGpkyZAk9PT8uFMOZkagkqc9uNXS3pY1qa5e0cgRMYZmcup8OBA8DGjUCXLnlTD0ckKXUGa+rF9xRjzrNv376qnp6e9wYNGuSUMfMeHh6ifPnyCTt37iwdGRl5x83NTZ+Zman58DYjI0Pn5uZmcY53S0kUvb2976empmZLomjrNteuXfNo3759dzc3N/2xY8e+NpcMMTds3UfXrl2vde3adZW55c8//3xra/abF+fCUXV1tt69e8dNmjQpY/78+aHDhg27dPnyZa8///yz5vHjxy0m3MzvuKcEY/lEq1atcOzYMfTv3x9CCHzyySdo2LAhjh075uqqMea0buyWnl47oiu8WhkFOYGhM4YHRESYX7Zpk21lFdXhCwX5nmIsP1u3bl3Z27dvB9aqVeucvU+DIyIiXo6Pj9ec6YGIhCG5ZdmyZZOvXr2q2mvC4OLFi36lS5dO0lrH29s7Iy0tTfMhcHp6unvx4sXv52abF154oUPp0qWTDx48uMoZAQlb9xEdHV134cKFIVrr3Lt3z93Dw0PzeubFuXBUXfPKwIED98yZM6cZAEyaNKl+s2bNTjrrmuclDkowlo/4+/vj22+/xU8//YTSpUvj+PHjiIqKwrRp05CVlS++C1kRltfd2J1ZRkFNYOis4QHBwcCrr6ov69TJ9fUzll+DHgX1nmIsv1u5cmU1AOjUqZPmdI9adDqdfseOHWaTGer1ely9erVU3bp1bwNArVq1ru3du7eSufUBICYmplKVKlU0pw2tWLHi7bNnz5bQWufSpUulq1SpctvebWJiYkocOXIkfM2aNZvtTXRYvHjxdD8/vxy5DQxs3UdCQkLxLVu2hGqtExsbWyI8PPy21jp5cS4cVde8Eh0dfebatWslNmzYUGbDhg2NJk2a5LSZVfISByUYy4eefvppnDhxAk8//TTu37+P8ePHo1WrVriQ36YmYEWONePyHZEU09ll5IecFrZydLJRU19+mXMKzmbNrB+64ez6Afk7Z0NBvKcYyytr164tFxoaOsjwOnLkSAQA/Prrrw2M3z927FiO3gm7d++u5ubmljVs2LCz9u6/c+fOxydNmtR+3759AabLrl+/XqxHjx5typUrd7NRo0ZJAPDmm2+evnXrln+PHj1anzt3ztt4DH9cXJzn0KFDGx08eLDK1KlTD2rtd/To0cd///33evPnzw/NzMzMNlny3bt3dWPHjq177dq1Ev369fvX3m22b99erkaNGhdLlCihOcxBy9GjR79v166d2XwZtu6jV69eZ3/77bd6P/30Uxm9SReyjIwMev/996tfvHixXJ8+ff41UwSAvDkXjqprXvHw8BA9evTY279//16VK1eObdq0aaKr6+QInFOCsXwqKCgI69atw+LFizFq1Cjs3r0btWvXxueff45BgwaBiCwXwpgLaHVjt7aBlhdlqOW0yM8ccU4s2b9f5pDYtEn2kLAll4Sz62cu6NGy5cPhJ7Gxsh4REa65ngXtnmIsr9y6dcvz33//rWD6flJSkn9SUpK/4d+pqanZ2iZ79uwJvHr1apnq1aufr1Chwj3T7d96663aS5cubWppBo7PPvvscHp6uvvTTz/9YmpqanEhxIMfUZ6envcaNGhwdsOGDT8Z3vPw8BC7d+9eOnz48JYtWrTof/fuXW/DNt7e3uk1a9a8tH379m+DgoIe9C5Qq0vt2rXvzJ07d/W77777+Lhx47plZWW5GZa5u7tnhoeHx/7www8r/P39s+zdJiEhwXv//v01/fz8zA7Ec3Nzy9q+ffs3devWtWuKN1v30alTpxsTJkz436hRo57q169fgPH5dnNzy6pYseK17777boWjz58958KeutrC399f9Zz7+fll+vj4qGbS8vf3z/Dx8TE7JGPy5MlH16xZ02TcuHG77alTfkRCCFfXgWkgIn8ASUlJSfD397e4vjOlpaXB29vbpXUoqi5duoSXXnoJf/zxBwCgS5cuWLBgAcqWLevimqkTQiAxMRFpaWkoV64cB1CKmNhY+RTbNCnmpUuWG2mG75nclOGIeuRH+f14nF2/mBjZQ8LUpk1p6NjRGwsXPgxa6HSy14I9M3i4OrDBnK+w/J5JTk5GQEAAAAQIIZIdWTYRlY+Kipq6aNGiG5GRkXes2WbPnj2BzZo1GxUeHv7v2bNnFzuiHoMGDWqycOHCjiNGjPhl9uzZBxxRJmOO4O3tPT4tLe1jV9ejMOjUqVNNHr7BWAEQGhqKbdu24dNPP4WHhwc2btyIyMhI/Pjjj66umllxccDu3flv3DdzPkd0Y88vZeQXhobytGmWjyevci6Y7sea852bupnL2RAW5rihI/l5eAhjRdGOHTuqERGGDBlidz4JxhxNr9eDiCzOvMKsx0EJxgoINzc3REdH48CBA6hTpw5u3ryJ7t2746WXXkJSkmby5zy3cCFQuzbw/PP8w76osiUpZn4vw9WMG8pvvglMnWr+ePKqUW1uP1rnO7d10wp6OGLmi7zIicEYs965c+e8L1y4EBISEhJXu3Ztq3prMJYXpkyZUqNChQrXXV2PwoSHb+RzPHyDqbl37x4mT56MadOmQa/XIyQkBIsXL0abNm1cXTXExgIhIQJCJAJIA1AObm6Ub7qYs/wtP3/PuKJbvy1DIuRnDzD+37pOB/z7r2Pra88wDUcO7YiNzZ6zIS0tDTdveue6fHPDQ2JiZHJXVnjk5+8ZWxSF4RuM5Sdff/11pfHjx3crU6bMzTlz5vzSvn37BFfXqTDg4RuMFVCenp746KOP8McffyAsLAyXL19G27ZtMWbMGKSlqebMyTNnz2ZvFAG2P7FktnFkd/38Ot2iq7mqW7+lHgDG1+vPP3N+9vR6YM+evK2To7YxxzADDPDw2B0xVMdVU3ryZ44xxgqGV1555WJSUtKMf/75ZwkHJByLgxKMFWDNmzfH0aNHMWTIEADA559/jqioKBw6dMhldYqIAEzzWubFD/uiypGNZR5Pr86abv3OalhqNZRNr9e2bY7dtz11cuQ2WoyPvWpV+e/cDtVxRQ4S/syxwqRChQrpPXr02PH0008fcXVdGGMFCwclGCvgfH19MW/ePGzcuBFlypTBqVOn0LhxY3zwwQfIzLR7ymq7GX7YGxogOl3BTS6Y3zlyDDyPpzfP0lN+ZzYszTWUgZzXa8GCnAFBIqBpU8fVx1Cnvn2zv9enj/Zn3JENftN7VYiH96qhF4W93zd5mYOEP3OssAkJCUlfvXr19unTpx9xdV0YYwULByUYKySefPJJnDhxAt27d0dmZibeeecdPPbYYzh79mye12XgQODoUWDNmoKbXLAgcGSXeEeWVdhoPeXPi4alaUO5Y0fZwDe9Xno9MHZs9oDgJ5/Ia+vI+sTGAsuWZX/vu+8s78NRDX5n36u5DWyYY9qbhj9zjDHGmMRBCcYKkVKlSmHNmjVYtmwZAgICsHfvXtStWxdff/018jqpbYUKQLNm3EPCmRzZJd5V4+nzI1umusyrhqWhobx5s0xm+f77OddxcwNGjZKJLWNigI8/lrN1OLoHR26O2REN/oJ4r6r1pimIx8EYY4w5AwclGCtkiAh9+vTB8ePH0bZtW9y9exfDhw/HE088gatXr7q6esyBHNkl3hXj6YG8SfJnyz5snerSGQ1Lc/WNjQUGD86ZzBLIPkwqOFjuf/x45/TgcFZj2trrZHqv5vchYuZ60wCu+cwxxhhj+Q0HJRgrpCpWrIjff/8dM2fOhJeXFzZv3ozIyEisWrXK1VVjDuTIMfB5OZ4eyJskf7bsw1zjcf9+eU6AnE/5HR3MMa3v9OkPG+pqM9sYvP22HNZh4IgeHOaCBM4IYNl6Lxjfq6dP5+8hYlrXIq8/c4wxxlh+RHndpZvZhoj8ASQlJSXB39/fpXUpLPN6F0V///03+vbti4MHDwIAXnjhBcyZMwePPPKIU/YnhEBiYiLS0tJQrlw5kGn2PVbkxcbKxqdxY83NDfj77zRERDjme8bcPi5dUm9Ax8TIRrEpIhkM0OlkY1yt4RgbKxuZ4eH2N87V6mug0wHTpgHjxpkPTBjXz9ZjN7Vw4cMAjbnjdsQxG8rJTV3z+/+bYmPlkBvj66bTyWE23CvCNfL7PWOt5ORkBAQEAECAECLZkWUTUfmoqKipixYtuhEZGXnHkWUzxpixTp061eSeEowVAdWrV8eePXvwzjvvwM3NDStXrkStWrXw+++/u7pqrIgxPH3/80/1p8cXLjhuX7b2FlAblgA8bExqDYFwRK4Etfoa6PVyOMa0aTln2DBex3gWClt7Mxiuzf791iXvtOeY1Xpf2Hqd8mLIj7Px8yDGGGPsIQ5KMFZEFCtWDFOmTMHu3bsRERGBuLg4dOjQAa+99hru3r3r6uqxIsC4i36vXjmXu7kBYWGO25+tuQ/UchWYcubsCOaCIsb7btgQuHwZWL0amDRJu36GoQGrVwMrVmQf3mHK+No0buycIIG5IRq2XKe8GPLjaGrDboTgWTYYY4wxAw5KMFbENG7cGIcPH8aIESMAALNnz0a9evWwf/9+F9eMFTTWNEbNPX1Xe1I8dapju7Pb01vAeIz/3r2WG8uOfGpvWl9Thn0HBwM9esikl5bqt3mzDAD17Gm+EW+aS0Pt2uQ2SKA1daq11ykvpl+1l9Z9wLNsMMYYY9o4KMFYEeTj44PZs2dj8+bNKF++PP755x80bdoU7733Hu7fv+/q6uULhaGLuDNZ0xi19PTdVMOGjq+naSLBjh0tX1fDsISGDbUby854am9c308+sdxQHzMm5zqAbcMwzA0bMTSkHREkMDdE44MPZF07drSc8NFcGRcuOPfzaqlsS/eBpaALf9cwxhgr6jgowVgR1qFDBxw/fhy9evVCVlYWJk+ejGbNmuH06dOurppLFbQu4mqNGmc30iw1Rq15+m7MmU+ODUGGzZttv67mZkdw5lN7Q33feMN8Q91wj06fLvcdHS3XAR4eY5Mm1g3DMPckf+9e+4IEpuXHxgI3bqgPTZk37+H12LxZO0eFWj11OmDbNud9Xi19F1h7H5i7jwradw1jjDHmDByUYKyIK1GiBFauXImVK1fikUcewYEDB1CvXj188cUX0Ft6tF0I5ecu4mrUGjXObuhY0xi19PSdSP1JvLOCKbm5rmoJHR0x5aY11PatFvD5/HMgPj7nMZpycwN8fLKfY7VcGqNHA+XK2R4kMA0uGe7Fnj21e8pYcz3Uhrfo9bJHiTM+r9bcM7bcB6bXMjZWDsEpKN81jDHGmLNwUIIxBgDo1asXjh8/jg4dOiA9PR2jRo1Chw4dcOXKFVdXLU/lVWPTEcw1mpzd0LGmMWrp6fvly3JKROMnxwsXAlWrOieY4ujr6so8AeaOZdcuy8Mw+vSRPShMz7HhSX50tPz39OkPlxsHioz/25phCcb3oiXWXI+BA4E9eywnBHXE59WaeyY398GsWTl7EOXX7xrGGGPMmTgowRh7oEKFCti0aRPmzJkDb29vbN26FbVq1cJ3330HUUTmsCtISenMNZqc3dCxJjGhuXUaNnz4tNj4ybEhwGLN9JtqLPWwcPR1tSeJpqOYm6Xj5k3tQNCePcCyZdoBqxkzsi8fMgQICZFBjJCQh/9tCFiYG5YAqDe6AfMBBWuvx5072oEOR31eIyJyTr+q02Uv25r7wNzwqhkzcu7TtHzGGGOsKOCgBGMsGyLC8OHDceTIETRq1AhJSUno27cvnn/+edy8edPV1XM6VzY2bWWuoW3akHJGUEWrMWrLOga56clgzXAVZ1xXW47PHuYCLcHBwMcf51z/44+zz8hhGghSa8wbn2O1a6DXPwwsCKEeNDINLsXEABs3Ap99lrOOOt3DIMmnn9p3PbSmTnX251UtyKJ1H5i7N80Nbxozxrq62zrMiZNpMsYYy884KMEYU1WlShXs3r0bU6ZMgbu7O9auXYvIyEj8+uuvrq6a0zm7seko5hraCxbkTVBFLd+BPesA9vdksCVXhDOuq7njy20j0FKg5fr1nNtkZT2cfcOQ+NL4GC2dY19f2+poGjQyrvNTT6k34MeMeRgkMdTR1uuhlgPjk08c/3k9ezbnMQhhXb4IQPveNHctRo2yXC9bc8YYhuJwMk3GGGP5FQclGGNmubu745133sHevXtRrVo1/Pfff+jcuTOGDRuGO3fuuLp6TmVtY9rV1BraBSWoYszQ0LQ0DaUpW3tY5MV1zW2iUUuBFnNd/w30epn40pSl3iK2fqSNAxqmdVaj0+VsdNt7PYzv8dOn5Uwljr6uuR3yo3Vv2ttzx9aErZ9+Ks8NJ9NkjDGWn3FQgjFmUYMGDXDo0CG8/vrrAIB58+ahbt262LNnj2srVsRodec3bZCZe3Kbn7twDxwoG5i2BFN8ffNmuIq1HDF7i7nGrOHjZq7rv+n6aoEZrYCVWiPceJYUUx9//PD+sqZO1g5NsJazA0xagYPYWGD1avmyN4+JPcFDW4JwsbHAm2/mfJ+TaTLGGMtvOCjBGLOKt7c3Pv/8c2zduhUVK1bE+fPn0aJFC0ycOBEZGRmurl6hl9un786eJtRRbGloLlwoZ5Iw7mLvjOEq+/fLngn791te1xGzfJjLmdCrlzxmrZwKBpYCM6bDEmJjZd0//jh7I3zBAmDlSvUyoqKy19k0OGSMyLqhCYa6mAue5XVgTS1wsHChTPjZs6d8hYTkLo+JLTmEbem9oTb8BJDbm04LyxhjjLlSoQ5KEFEgEX1CRMeJKJ6I/lNep4joayIqY0UZDYhoAxFdMNo+joj2EdEgInKzVIZSTlkiOklEZXN/ZIy5Ttu2bXHs2DH07dsXer0eH330ERo3bowTJ064umoW5feeAubk9um7I57e5zdqwwV0OtmbwJHDVV5+GWjUCBg7Vv59+WXt9bUajdbef6ZDWQwM1w3I2dh96SXrhgKoBaeM3xs/XgYmjBvhlSqp19PHR/s4DIhkcMPaQJO54JmtgTVHfd5NE3kOHpy9sS+EfXlM7AkU2jLsw1zwqnt39WlhHa2gft8yxhjLe4U2KKEEC7YCSAXQGkB5IURZIURZAE0BnAawm4iKa5TRAMAaAHMBVDfaviKAvgC6AJhmRV2KAVgFIAKAV26Oi7H8IDAwEEuXLsXatWtRsmRJHDlyBFFRUfjss8+gt9SH20UKSk8BNbl9+u6Ip/f5jbmZIlJTHbeP/fuBJUuyv7dkycMeE2qNLnONxs2bbbv/Bg5U76FguG6mjd3Fiy0PBTAXnBo8OPt748fLIIqlXBPG59rcU/l33wUuX7YuUKQVPLM1sOaIz7va9TV3nLbmMclNoNDaYR9qCUEnTAB++MH5AcqC/H3LGGMs7xXaoASAbgAuCSEmCyFuCvHwZ4QQIkkIMQvA/wAM1ShjMoBRQoj/CSHuGW2vF0KcAdAbQA8relx8DOBvAKfsPRjG8qPu3bvjxIkT6Ny5M+7du4fo6Gi0bdsWly5dcnXVsinoPQVym3BPbXudTs7gUFDOgancnhNr7Nyp/v7u3dqNLtNGY8eO9t1/zZppH6NpY9fS0BdzwSnTRrZpA9uac21unUGDrB9Ko5VLw9ZcCrn9vJu7vuaGqdh67+U2UGjtMCfje/Hff4F27ZwfoCzo37eMMcbyXmEOStQCEGNhnS3KenaVIYRIBXAQQFVz6xDR8wBaAnjdQl0YK5DKli2LjRs3Yv78+fDx8cGOHTtQp04drFixAsKWwdJWysrIwN34+Gzv3Y2PR5ZGXouC3lPA3kz95rYnkg3Rnj3z5imms7pxjxnj3KlPH3tM/f3wcMuNLkOjEZDJENXuv1mzHv7b2l4Xo0er18mac2wucGApUag1919u71Fz9QNkLo2DB23LpaB2vtesse4e1GpUBwfLoSjG50ync8yxOitBq3EAIy/2W9C/bxljjOW9whyUCAYQb2GdqwBCNJYHCCEsTZJmtgwiqgHgUwA9hBDpFsphrMAiIgwePBhHjx5Fs2bNkJKSgldffRWDBg3C9evXHbafrIwMbOnRA+tbtMCdy5cBAHcuX8b6Fi2wpUcPs4GJvGwAOEtup/k0bL969cOgBGBffgpbAgzO6MZtKHP6dFn/6GjnTH3asKHM1WDspZdkLgVrGl2Geo4dq17+jBnyPFrT6yI6Wu5z+nTrcy2YXitzgYMFCywHE4zvnxUrZO8PU7m9R7VyaRhyXeQml8KYMdbdg5Ya1QMHyiEphtk3/v3X/mN1ZlDNVfstDN+3jDHG8hY540lmfkBEiwH8JIT4SWOdugBmCiFam1meKIQItLCfmQCOCCEWm7zvD2AvgGghxP+U944AeEYIcUmjPE8AnkZv+QGITUpKgr+/v1ZVnC4tLQ3e3t4urQPL/7KysvDJJ5/g3Xffxf379xEUFIQFCxaga9euuS77bnw81rdogZQLF+AXFoY2S5cipl+/B/9+etcuFC9XTnXbhQtl4zsr6+EPcUc3YguCmBjZeFV73/Bk35yFCx8+QdbpZONG6xzGxspGoHEDz81NNljNNYIsfc/YU6Zhu7NnZYPJ1gbY/v1yyEbz5jJQERsrZ1ww/t8nkWyoGspWq6ea1atlTwCt49E6ZkB92ccfy+kg1a5VbKwcEiGEHCJiSOB47lz2XBKmTK//xx/LGTisOae2nP/Vq2UvHlMxMbJ+pvVUu2eMP++m1O4X4/oBtt9j9t5f1px3S9u7Yr+W5Pfv28LyeyY5ORkBAQGAfIiW7Miyiah8VFTU1EWLFt2IjIy09ICOMcbs1qlTp5rurq5EYUREBGARgDWGgIQN3gLwrumbaWlpKFasmCOqZ7e0tDSX7p8VHKNGjUKDBg3w2muv4Z9//sHTTz+Nfv364ZNPPslVcI0CA9Hu11/xv44dcfPCBaxt0QIA4Bcaina//goKDDR7n774ItCyJXDhAhAWJn+I5+aWjo0Fzp8HKld2/tNNRwoOzt5TApANzAoVtM+H6awDer1soLZsaf74T5xQf+J88iRQsqT6Npa+Z+wpc/FiYMQIWXciYM4cy7NoGIuMlC9ZP/lSi+cblgHA9u2WAxI6HXDvnuXjMXfMO3bI66K2bNw489fq55/Vz4dhf2qXQO36jxsn/9u4DLXPha3n30xcEW5uso6m9VS7Zwyf9x9/lL0sTM+P8flVq9/s2cCrrz4MwEyZIq9DWlrO+z0395fa8VjLVfu1hqO/bx2tsPyeKSzHwRhjRaanBBFVBfArgE5CiH+U9+rChp4SRDQeQDMhRFej92bCpKcEEb0BoB2AzkKILKP3j4B7SrAiQAiBxMRE3L59G1999RVmzJgBIQRCQ0OxdOlSPGZusL6V/tu9GxuUgAQAdN21C2WbN89tta1ma48BZzD3hNSaJ6f2PMW0p4dFfugp4YyeFZbOhfH9YczQpV2vf3jeO3a0XD+1YyCSL7XAh06n/r6hp4FWrwtbj9m4jKlTZQDA+HOhdnw6nZxZpFIlObOH6f5svde07hlL199SL5Rz54ADB7R7ndhzf+VGbCzw55+yh43xTzhn77cwKSy/Z7inBGOsMOjUqVPNwpxTIhshxBkhRJghIGFnGR8bByTUEFEbAMMB9DYOSNiwj3tCiGTDC0CKndVlzOW8vLzw6aefYvv27Xj00Udx6dIltGrVCuPGjcO9e/csF6DizuXLiOnXL9t7Mf36Pcgx4Wz5IbO8uRwC1uZvsGfsvz3jxJ0xft3WMu1Jumd8HkNCgE8/zb5c61yY3h/G5s+X+QeMz7s9SSSNgxumDEM3zNXP3PmYNUv73jGXp8G4DEPD3VC3oUNl41lt6taePYFGjdT358icBJbOr9b9ERws96l2XIbPe14ndTTcmz17Wp41hUnOSrTLsvPy8hrv5+cXbfoKCAgY8+ijjw56/vnnW12/fj1Hl99nn322raen51uXLl3yckW91cyaNauyu7v727NmzarsjPLDwsIGVK5cub8zymasoCrMQYlMAJaGp7gr6+XGgzKIKBjAUgC9hBAJuSyXsUKjZcuWOHbsGAYMGAAhBD799FM0bNgQR48etamcu/Hx+LlNmwc5JLru2gW/sDCkXLiAn9u0yTErhzO4OrO8uaDI/v22BUusnVLQeH17Agz2Jj/UakjYUqatDVzT8yuEHKYwffrDdbTOhdr9Acg6dOyoft6tOR7jdWbPVh8+8u67cp033jBfP3Pn47PPLM8mYlym2vGpNZKJtIMZavtzdDBL6/yaC7YcOCD/Wvq852VSR62AlzP3W5A5I9EuU0dESElJmW76unHjxudr1qxZk5aW5lGrVq0hpoGJsmXLppQtWzahePHiNj/Ic5ZSpUqlBwUFJZQqVcopSerLlSt3q1y5crecUbYl/fv3bzp69Oh6rtg3Y1oKc1AiFkBZC+uUB6D1eDWRiHxtKOMlAAEA1hPRf6YvyClG9xPRBCvqz1ih4u/vj4ULF+Knn35C6dKlcfz4cTRs2BAff/wxstSy0anwLFkSJSIj4RcWhqdiYlC2eXM8FRMDv7AwlIiMhKcySNqZT8ZcnVneXCNp1y7nB0vsDTDYGgCxpiFhbZlaDVy1+8RcUOHNN7OvZ+5cmGvk6vXa18Ka4zGsYy53Rs2aD48rLEwmszStn1qvi0GD1AMKe/Zkf8/4mCdOfHicbm7AtGnqn4umTbWDGcb7Mz4/5s6v6TWLjX2YW0OLufMbHCx7lpgaP16WaenznpezaJi7N52934IqP/RqY4CHh4do1KhR0s8///x7gwYNzr366qvZxlp+9dVX+//9998FQUFB911VR1O9e/eOu3r16tzevXvHOaP83bt3/7Rr1671zijbktTUVM+UlBRPy2sylrcKc1DiOIDHLazzuLKeXWUQkQ+ABgDOAIAQ4kMhhL8QoqzaC8AVABFCiI9sOhLGCpGnn34aJ06cwNNPP4379+/jrbfeQqtWrXDhwgWL27p5eKDdmjV4etcu+IbImXh9Q0Lw9K5daLdmDdw8PJz+ZExt2kK9Hti82bH7McdcI6lFC+0hBY4K0tgaYLCVMxoSag1cc/dJRIR8um9KLaigdi6Cg2UD3ZSl3hm2XJ9mzXLWkUgGAIyPq0kTmXQSyF7+wIEy/4MhJ8WCBerH3KtXzs9PcLAsc+pUuS2R/O/oaPONc+PpRM31mlA7P6bn1/Savfyy/PvEE+Y/69ac26ionO8ZD+GwFHTI7VSo1jL32V+92rn7Lahc3auN5fTmm2/u/+uvv7g/D2Msh8IclPgJQDARTSaiksqMGADkdJ1E9BqAJwHM1yhjEoCZRPSkkoDSsL2OiMIBfAdgrRDimnMOgbHCKSgoCOvWrcOiRYvg5+eH3bt3o3bt2liwYAEsJd918/DIMe1n8XLl4ObhkWdPxjp2zP5kWYi8ewKXs5Ek8OW0RDRsmPP9efNksKQgdV8+f945DQnjBq7WfWJPUMFUdDTwySfZexKYe4ptTxAtOFgGEgzl63Ty30DO4xo8OGf5sbGyJ4DxTBqGxJnG1D4/asNb3npLvq/VOA8OBnr0UO81Yc1TfrVrtmSJ9mfd2nOrFojS6R5eb2uCDs4O1hn2oRYg6dGDe0iocXWvNpZTvXr1km7evBlo/N62bdtK1q1bN9skwCdPnvSpXbv2Cz4+PuOM81P4+Pi8UapUqdfeeeedSNOyt2zZUrJBgwbPlyhR4nXD+sWLFx9XsmTJkT179myVmZmZ7VMeHBw8FACmTp1atWrVqv38/Pyin3vuuTaG5WXLlh1uuo+yZcsOX7NmTbnw8PD+gYGBo/38/KIrVKgwtFevXi0zMzPp1VdfjapcuXL/gICAMb6+vtGlSpUaOWDAgKZ6k/+pjR49ul7//v2bGr9nGFbxySefVImKiupRtmzZ4f7+/mMDAgLGhISEDH777bcjTcvR6/V47bXXGlSsWHGIv7//WF9f32g/P7/oEiVKjGrSpMmze/fuDTCsu2TJkop+fn7R69evb7Zs2bI2hnPUtm3bJ02vR4MGDXoYn0d/f/+xZcqUGfHCCy+0vHXrVrah8SdOnPCtWbNmb71ej7Fjx9atVKnSQF9f3+jXX3+9vun5Y0xLoZ0SVAiRRUTtAEwEsAOAcWAiUXmvhRAiFQCIqDWAbwDUN2QwFkIcJqJnAUwG8CURFVe21wOIA7AAgC0/8W8AyDfd0xhzJSLCyy+/jNatW+Oll17CH3/8gSFDhmD9+vX45ptvULaspdFXOVlKWucoZ8+aTzJnPGOCpVkw7DVwoAyMnPn7PuI/HQq3r3bgTo8YDBwYghaRcfiu2xuoGumFx9rMRViER46GmyG3gTPZe/yVK+ecPcLRDQlL98kbbwD79gFr1z5c3qePbcfxxhvACy/IMsPDzc8MohYcseb6GO4B4/JjYnIelxDZgw9DhwIrVqgnn5w0SU59acw4IHT2LHDjhva5M7ysqbePD5Caav78GNMauqBWj9ycWyDn59vSceUVtevO1BmCOKYzDeW36UmLEn9//6ysrKxsbY+kpKRiqamp2aZCGT16dMtq1arFb9myZa3xsA69Xo/ffvutdLdu3Qa89tprZwzLrl275tGzZ88+I0aM2DJ+/Pi1xYsX1wNAZmYm/fXXXwGvvPLKE2PGjKn/xRdfHDTar9+AAQOanjp1qtz06dM3Pf744wmG7ZTlOaa8S0hIKDl9+vRmq1at+qFBgwbJAHDhwgXvTp06PR8VFVXex8cnffPmzd+Hh4enAcCBAwf8u3Tp0mfu3Ln/DR8+/KKhnJSUFM/U1NRsQyhSU1M9t27dGlmxYsUbH3zwwfZ27doluLu7C8MxDxo06NmAgICMN95440HC/kmTJkWuXbu20fz583948sknr+uUKFxiYqL7G2+80eDpp5/uc/Hixa+LFy+uf+mll6689NJL059//vnW/v7+6d98881e0+O7fv16sR49evR+5ZVXtk2YMOEH4/Nx5syZ4i+//HLHfv36tdm4cePvRsfinpqa6t2lS5eO9+/f1y1evHhd06ZNb3t4eBTO6R2Z0xTmnhIQQiQJIcYJISKFEOWMhlJUE0IMFUL8Z7TudiFEuOmUSkKIw0KIrsrMHYbtywshGgoh5tsyw4ayTaojj5Gxgi40NBQxMTGYPn06PDw88MsvvyAyMhI//PCDzWXl1ZMxS/vJi+RqwcFA08gEuJ3f8SDR53+7d+PQiy1RMX4l3M7vwKlDKS7pvpyb48+LMfqWrl9sLPDjj9mXf/ed7T1hLD09z233ctPyLc2QYShfLfmkmxvQpYv69l999fB6vvBCzl4Ftn7GDPVu2PDhFJ+WhlhYc2zG9bDl3KoFGYXIv93886JXRmGRV0NrmGPFxcWV6Nq16znTPBM6nQ6dOnW6MWXKlHXG73/99dfh1apV+3fKlCknjRvS7u7uonnz5okffvjhVp1Ol+1Tnp6e7nnhwoVSe/fu/fGpp566brydOVlZWbqZM2duNQQkACAsLCxtxIgRu06dOlV5/fr1vxgCEgAQFRWV3KNHj79+/vnnKtYct7e3972dO3f+1KlTpxvu7u7C+JjHjx//+7JlyxoYr79///7g4cOHb3/qqaceBCQAIDAwMHPBggV/BQQE3Fm8ePGj1uwbAObOnRtRtWrVKx988MEJ0/NRtWrVuz/99NMv27dvr2vaY+PatWslfXx87v3++++/tmrV6pZxQKJv374tateu/YK1dWBFV6EOSjDGCgadToexY8fi4MGDqFOnDm7evInnnnsO/fr1Q1JSktXl5FXSOUvJE/MquVrxcuUeJPpMuXABG1q0eDAzyVMxMajVpGSed1+29fjVxvw7uyGRm2kibWEpn4GvmTTKPj72lamWxFJtWEJoqPrxN2yonvRxzZrs19M4qJHbz5i1ASxzCSkNTOvh62t98IS7+RduHMQpeCpWrHhz9erV1c6dO+ettvyNN974xzhgcfHixUcqVaqUYK68p5566vrMmTMPGb+XmZnpPmrUqP221Mvd3T2zcePGiabv16xZMzEwMDCpVKlSOXpDh4eHJyYkJPhZU37Tpk3P6cxEX1u0aHHj+vXrjxi/98MPP/w+ceLEv82VFxYWdu3MmTOPmFtu6vz585rnsUyZMhne3t7pZ8+eLW78fnp6utenn36ao+cFACxbtmzXsWPHVlpbB1Z0cVCCMZZvREZGYt++fXjrrbeg0+mwbNky1KpVC9u2bbO6jLx6MmZuP3mdXM03JARtli7N9l6bpUvhGxKSpzMDGNhy/FoNUmc3JGydJtLWRqo1je07d9S3TVX605kGIEzLfOMNucyw3v792Wfd+PdfmWvCOIeDXi8TYALqx6+W9NGUXg98/732Z0wteKI2c4YtAazr19XfnzYtez0WLpTHaNz7Qeved8XnhDFm3uzZs3fEx8cHNmjQ4BXjnBJ+fn7R5cuXf+Wtt96qbbx+WlpaMS8vr0xb99OmTRuzDXA17u7uWWpBAx8fn6xixYqp7t/b2zvr/v37Vg2Xd3d3N9tbo0SJEvczMjI8jN+7e/eurkuXLh2DgoJeNT1Pfn5+0TExMfVTU1M9zJVpKi0trZi3t7fmMHMPD4/7t27dylamr69vamhoqFOmT2VFR6HNKcEYK5g8PDzw0UcfoUuXLujbty8uXLiAxx9/HK+//jo++ugjeHurPjjJJq/Gf6vtx9CgdWZOBGN3Ll9GTL9+2d6L6dcPT8XEwDckJM/HoFt7/OYapC1byjLyilpe1eBg4Nln7c8pYW0+A61ztXDhwzJ0OtnwfvPN7GVOny5fRNmPQ6eTjezWrWVDvXZt2Ug3rc+lSw+HT2jVyZRhqk9z58O07vOVdNKm74WFWZ8DJjYW+Owz9bp065Y9l4vxuQfk+fnyS3n+zSmIuRqcmbeGMWdITk52c3Nzsxg8CA8PT9u/f/9a0/f1ej327NkT2K1btz7t27ePa9u27c3c1CcwMNDmQEZ+MmDAgNbp6enuhw8fXlChQoV7pstfeOGFlnlRD3MBGcZswT0lGGP5UrNmzXD06FEMHToUADBz5kw0aNAAhw4dsrCla+XlU9e78fH4uU0bXL5wD5fLvYioH/c9GMrxc5s2uBsf/6BOjup1YGlIgrXHb65HhRUzwzqEVk+G6dOzByQA23JKWNtbxNy5AnIGNYwDEqZMAyumPQ7u3LG+94panV56yfr7WS0gM2SIepDG19f6HilqeR8AYPTo7HVRO/dCAMOHW85vovY5ceR0uo6UF3lrGHO0w4cPB5QsWTLR3u11Oh2aN2+eGBUVdXbz5s0PPqne3t7309PTi9yD1qNHj1b68MMPd6sFJABAr9fnmOzZ09MzMyMjw01tfS8vL4vnMSMjo1iJEiUy7KsxY+ZxUIIxlm/5+vpi7ty5+OWXX1C2bFn8/fffaNy4MT744ANkZubfwHxeDSHxLFkS+/xex1v4Fx/GL0fD5xri1lAZmCgRGQnPkiUduj9rG0LWHL+5IRJhYTnXdXTDUGvYQGysDACYMteIV6ubLcM/1M6VWsPakMvBWsb1VauPTmc+d4VpnRYvtv5+Nld3taBIaqrME2GanwKw7pwSyTwYltYzroct+V3ya8M/L/PWMOZI06ZNi2rUqJHFwYxhYWEDTKeeNCGysrIefCNWqlTp9sWLF0uZW/nnn38OGjNmTD0bq5vv6fV6nZubm+osF3q9HkeOHMmR5DI0NDTx8uXLJdS2CQsL0zyP169fL5aWluYVERFx1/5aM6aOgxLs/+ydd1gUVxfG39mFpRcFFARX3WhsWKIYC1hQE0yxixoLGokl0VhRsaSaiAW7iS1ExQ6WqIlfTEw2GqxoYhRbVJQVRFFQ6SzszvfHMLuzszOzsxRBM7/n4VGm3LlzpzDn3HPeIyFR7Xn77bdx+fJlDBo0CCUlJfjkk08QFBSEf//91/LOVUR5oxN0Wq0h0oEmPz0dOq1xgiI9Q4HVlyeBBDXpodcDU+Z6ICDuFHrGx0OuEJ1KahFrDSFL5y82oqIyDEOhSAa+0pMymblTga9vYs4tMRFYvpz6V0wVDbmcSuGQc85vmcN0grD7Axi1JYSEJZl9Ens/i6mSQfcvMRGIjDSmdNBClmLGlHbQDBkCNG7Mvx0bsfou5TX8rXWkWbP989atkZAoDyUlJcSFCxdc+/bt2/PChQuNvvnmm5OW9qlZs2ZOREREu8ePH9uy1127ds3pwoULjXr27JlGL/vwww9vXb9+vd5nn33WvLCw0PAGKikpIc6cOeM2b968HiUlJS+dzdOsWTPNF1980T4/P99wbnq9HseOHfMIDg7unZuba5bvOm7cuJuXLl1SLVmy5FWtVmvi6uYbRwC4efOmY79+/d7t2rXrP3xinBIS5UG6qyQkJF4IPD09ERcXh23btsHNzQ1nz57Fa6+9hm+//RYkV1x3Gaguodo6rRbHQkNxMCgIuRoNAEo74mBQEI6FhhocE5RxYjp9rtMBaTm1K9QhYTwWq5/lNIQsRVSUxzAUupZCkQznz3O3p9cDR48af09MBMaO5e+b0LmNHg28/jowYwb17+jRpn0GzKtoLFpECVvevQtERBj7zxc9ERVl6kAID6cEMJnbl2eGnW98aaeApaiO994z18iYPVv4etNjGhdnqqNBkvzblVWwtDz3u7WONGu3l6qFSFRHSJIEl9iih4fHtAEDBgxRKBQlly9f3sgu8+nm5lbs5ORkIpK4YcOGo2fOnHlFqVROY7fXuXPn8CFDhpzp1avXI3r72rVra3fv3r3j4MGD/t7e3lPobV1dXWe98847o5s0aZK+fPnyv1jHzYYAXOtdXV1zuLZ1cXEpcXJyKuBa5+rqqmWfn4uLS5GTk5NJyoWTk1ORi4sLZxoGANjb2+ucnZ3zmMtiYmJ+z87OdqhTp86U0vOd4efn9+Hs2bO79+3b99rbb799kd1m3bp1i7Zt27Zr+/btbWvVqjU1MDCwH72udu3a2j179mw/dOgQexxnBAYGjqlbt27Wtm3bTJTHXV1di52cnHgjJ6SSoBJiISrqY16iciAIwhXAs2fPnsHV1bVK+1JQUCBKZFBCgiRJPH36FAUFBfDx8QFhTdy5CO7du4fRo0cbqnKEhIQgJiYGvr6+ZW6TS5yvqmra56en4yCjvGdwbCzUYWGG3/smJMDRxwepqZQRwxZKvHu34jUsLB1Lp9WiKDMTjj4+Judh5+FhlYOE+Z5RqylDjY1abS7QyETMtRw9Gti61fj7qFHAV1+ZnyMT+nyPHjUXU6SJiwNCQ/n7lphIOSLYzJ1LOR6Yfc7Kogx1kjQ/j9RUykDetcsoJMmEa4zKOp5sLI0v3zkyYYtzCsHun/l5FABw4DyPmBjKYaHTGSNWxDzXZX22rN2vrMcp63lJULws3zPZ2dlwc3MDADeSJAWNbGshCKJOQEBA1ObNmx/5+/vz1AqSkJCQKD+9evVqLkVKSEhIvHDUrVsXv/76K1atWgV7e3scPXoULVq0wJ49e8rUXnXL0Xb08UFvtdogWnmI4aDorVYbDP/nKaopdCyxkR3WUpYZYb5rGRdnWopy2zbT/bZvB06dEq46odNR0QZ8DgmASieIjuZv488/uZcvXGguDhkZaTTc2feknx81Dps2mbdFENxjVBEz7GKeFb5zZMLlkJDJzCMsuPpXXs0OMZT12bI2wsLS9nwRKc9Lt0ZCQkJCQuJ5IDklJCQkXkhkMhkmT56Mv/76C23btsWTJ08wdOhQDBs2DFlZWVa1VR1ztJ2VSgTHxposC46NhbNSabLseRonfMcqysxEVlKSoerHg5MncTg4GDnJychKSkJRJlW1zdr0GEuGIVd7fNdyyBBjaDzfNllZwnoI9Oy+kOOCJKk0i6VLudd37sy/LxM+cUjmPclXkYKPinBiCT0r9PV49VXx7dEQBNUu83wIgooe4erf9OnGayWTCZ8HrYcBWHf/leXZstbxI7S9pbSOiqyqIyEhISEhUZVITgkJCYkXmqZNm+L06dP49NNPIZfLsWvXLrRo0QK//PKL6DaqY452rkYDdViYyTJ1WJghEoHJ8zROuI4lJrKjrIKVfIYhX3tiqi9wlaIEgIkTgZEjhcUkGzQQVwUjMpLb+G3XjkoVYRIaKl4cknlP8p0rSfI71MrrxOJ7VhITjdejb1+gUyfTbYTGTCbjdq6QJJW+wrxX6OtOR6NERADXr1s+j7Lef9Y+W9Y6fvz8qHuOyYgR1L/VKXpLQkJCQkKiMpGcEhISEi88tra2+OKLL3Dq1Cm8+uqruH//PkJCQjBp0iTk51uuXPU80yDEkJ+ebog0cFGp0CchwWDwHw4ONqvKUR0Qiuwob3oM2zAUak9M9YW8PGobtnGt11NpHKdPU5Ux2NBREGLQ64H4eNOUEXqWfssW4Nw5YMUK6t+4OO7+MOG6J/38qIocXNsKOdTK48TielYWLTJW0QCof8+eBQ4fNp7jpk2mlTOYZUCnT+c/HrtcK/u6r1hhuc/POz3LGsePNalEVR29ZQ2WoqKqi6iwhISEhET1QHJKSEhIvDS8/vrr+PvvvzFp0iQAwDfffIPXXnsN586ds7hvdcrRtvPwQE1/f0OkgXdgoCESoaa/P+w8PCr1+GLKkbIRiuyo6PQYS+2xqzQwoQ328HBKJJIN7bTgi144flx8ysT06dSs/OjR5rP07doBU6dS/wJASAgwbx53OytW8N+TERHAkiWmRr5Yh5oYw5BrG/az0rYt9/VwdjaeI3MfjQZISTHuP2WKcCQFfW35DPXkZOHz5LtfmE6jikas44evb0zHDY1MBmRkVH9D3lJUSmWU+ZWQkJCQeLGRnBISEhIvFY6OjlizZg2OHj0KX19f/Pvvv+jUqRM+++wzFBcXC+5bXXK05QoFesbHo29CgkFDwlmpRN+EBPSMj6/wcp9MyiJaaSmyw8/1YYWmxwil2zDLaoaGms7Qsw32Tp2423FyoozFt98uW/+Y6PVUlQ+hWXraSFuwwHx/mQyoU0f4GDNnmhr5XM4LtnNBjGEotA3zWRGb/sTch/1/LsFO5hgkJgJDh5qvk8sBlYp/X4A/zYV2GlWlUcw3dh07mkak0HomTG2U6oilqJTqJiosISEhIVE9kJwSEhISLyVvvvkmLl++jPfeew86nQ5ffvklOnbsiGvXrlV110QhVyhMymsClHZDZTokAPGilUwsRXaoWtSo0PQYvnSbo0fNjWihCBh2OzIZMGAA0KED1cZPP3Eff+5c/lQLVrAIJ+zqCnzVPKwxRIUcamznQnS0uWE4bhxl+NNYYzxWRPpTeDh/pMicOaaVSGjEHkcopaeqjWKhsWNH/PBVYhHD80qXsBTFVB1FhSWqhtatWw/9/fffKzfsrxJ4//33O06bNu21yj7O7t276wQGBvYry76BgYH9du/ebcGdLSFRvRDllCAIwpUgiGcEQegq+KeQIIh2lX2SEhIS/01q1KiBnTt3Yvfu3ahRowYuXLiANq1bY9UXX0AvVELhPwKXoeLo44M2O09A4zMMmuQi3nKkzH3FRHZUVHoMfdyQENP2QkK4jejERMoQatiQ23gNDweioozVH+LjjW2QpHlawahRwNdfA2fOcM9wT5pkWbSSjsZQq/nLkH72mThDVEzuPntcZs82P6ZeTzljaMfHqlWWjUfmsct7fVNTqevAZt48oEcP7jFau5aKkhAzJnT/uLRCqtootuQ48/QsnyH/PNMlLEXNVEdRYYny0b9//+4uLi4RzB97e/tIhUIxj728devWhninvLw8+2fPntlWZd/LQl5enl1OTo5dZR8nOztbkZeXZ1+WffPy8uyzs7OtnsHQaDT2b7zxxts1a9acwrxubm5u01999dVRW7durcveJz09XfHuu+++4enpOZm5j7u7+7SWLVu+9/PPP3uV5RwA4Oeff/by9PT8mL08Pj7ep1mzZiPc3NymM4/p6ek5uXfv3m+kp6eLOvekpCRnb2/vj5KSkpzL2kdraNas2Yi///7bRcy2Fy5ccG3atOlIy1u+PNiI3M6l9GcugNMVdGwfADsBlPlmlZCQkBDDkCFDEHTvHsJnzsRRrRZTP/8ch/fsweajR1G3rtnf2P8EMTFGY1Umo2Zrw8Pp5b7Q63eAgA4jMA5B+N6kHCn3vtyRHUzoUP2K7jNAGXRchluHDtzb06Smcs/C07CXN29O/duuHdXe+PHUcegZbq7lI0ZQ4oX073Q0hl5POR6YzgeA2qZZM35DlB5DofGg4ZqZ5vPH0Y6Pli2N1S2YMFNkVq0ybkMQVPpFeHjZry9XPwGgZ0/qmDKZ6XqCoKql0GNIH19oTPz8qJSeiAjTtirbKE5Npc6vUSPhKhx862hDvix95ot4CQmpnDS1o0dN72V2uVY6MoT93FR1ypxE2Tlw4MDvAH5nLouIiGidlJTk/fPPP/9cRd2SKAPDhg0LcXFxKbx+/fq3tWrVMuS7lpSUENu2bas7bdq0Aa1atfq+devWOYx93pTJZOQ///yzwdfXt4i5z8qVKxuOGDFi6NWrV9cz2xNDWlqa3ejRo0OzsrJqsJePGzduyLx5836aPn36TRnDy5menq4YOXJkz+HDh7/x+++/88Q6UuTn58v69es36PHjxx45OTli7eFy0bJlS83nn3/e/uDBg8csbfvFF1+83rp165Tn0a/qgtj0DfpPzD8kSR6viB8Ap1htS0hISFQOqanwnT0b/wPwLQBHAL9du4YW/v7Yvn07SLHKhS8JfIZKYqLpchJy7MAGPIGvQbRSTFh/ZYSKC/VZreYv8ymU2y4UqcDHrFlGY5xvhpu9/KuvgJ07qTD82bPNozEA8/B9Pr0L2hAVm14hVCKVC50O+PFH7nVBQcYUGabTgiSBDz4wTf9gIuZ+EJpB50qzAUzHkOv+5RoTumJJWYRBy0JFRCmUJz3meaZL0Pck+3UaEmL6e3USFZaQkDBy6dKlhjt27PiN7UCwsbEh33//fU3nzp2TNm3a1Ji5LjExsemBAwd+Zjok6H0iIiJuNmzYMG379u31rOmHXq9H7969+77xxhuX7OzsTISsfv7559p+fn4ZERERJg4JAPDx8dHu3bv3l3PnzjW1dIxBgwb1VCqVj2vXrv3Imr6VhwULFpz/448/Wj58+FAwkiM9PV1x/PjxlgsWLOD5q/pyIupThSTJ+wDCAZyoqAOTJKkB8EFFtikhISHBSemXOQHgQwAXAbQH8Cw7GyNHjsTgwYPx+PHjKu2iGMQa+5a24zNUEhI4ZtVhg1yfLgaNictnMgWNnMoKFefrM63/0KEDMHKkueHK1U9mH4cO5a/8wGfMz55tHFshLQeSpCp81KtH6UIMGQIsXMi/HdNIs2SIijE26Rl6phFuCbkc8PbmXnfiBDB2LL8Tp337sldasHS+TEN21y5zw5fv/mWPSUyMMX2FIKiUkcoyiitS1LGshvzzTJfgi8rhcoBUF1FhCQkJI6GhoSdr1qxZwrfe19c3Oy0tzY3+PTs7Wy6TyfSurq46vn1q166dfffuXTe+9VyMGTOmU0lJiXzz5s0n2evat2+fFRER8Sffvu7u7iUymYzMzc3lKQwOfPbZZ82TkpLq7d+//7lG8jRq1Ci/bdu2Nz755BNBTZJPP/30tYCAgBsNGzYseF59qw5YI3T5FMBWgiDerKiDkyT5PUmSeRXVnoSEhAQnrC/zRgASZDIsiIiAjY0N9u7dixYtWuDIkSNV10cLiDXuxGzHZ6gEBQEyGWm2fMSBpQbRymZtXAQrX1hS3i9rBAXfjD/zWNu3A6dPU8fg03xwcmJFg5DUD3PmfMkSYxtcDgu9njoOH8xrMGuWeVQEG5mMqrbANtKEDFG+a0hrVSxdauwDl4YEF7QjoHdv7vOmx4oPOmJBqNLCuHH8UTWWDG/akOWLIqHuX/PlfNElJEmJaFpbElUsFR2lUBZDviJESMUi6UVIWEtRUZEsPDy8Q/PmzYd7enp+TGsRNGvWbMSuXbt82du/+eabb8XExChPnjzpHhwc/G6NGjWm1qpVa1JJSYnhjfXJJ5/4K5XKsUy9ATc3t+kNGjQI//rrr5uw29yxY4dv3bp1xzk6Os5i6hM4OjrOql+//gc//PBDba6+R0VFNW7btu1gb2/vj1xdXWe4ublNVyqVY+fPn+/PpVm1Z8+eOs2bNx/u7u4+jT6Gq6vrjDp16nz40UcftdNqtQKFkU25ePGiS5cuXfp4eHhMZut2uLi4RCQlJZXpqYuJiTkjtP7GjRu1VCpVFv27q6urzsHBofDx48e82iAPHz50ffXVV5+I7cP69evrHzlypM2PP/54wMbGxuwvjr+/f+6oUaPu8e2flZVl4+bmluPs7MzpKPn555+9Vq9e/caePXvi3d3deR0wbN588823li5d+mqXLl36eHl5fezi4hLh4eExJSAgIPT8+fOuhw8frtW6deshtLaGm5vb9ICAgNArV644MduZP3/+mX379rUvLCzktMELCwtl+/fvbz9//vyKkkt4YbDGKZECSgfiZ4IgrhME8RFBEM9FGERCQkKiXHB8mdts3Ij5S5fizJkzaNq0KR48eIB33nkH48ePR25ubtX2l4XYGVex2/EZKpQeAgG5nDRZ3ri9r0G0sp5KwWvkCBlhZY2gYJb45ArhZx8rL48y3GhtB3Y/c3O5DXSSpLQG7t6lSmzSbcydy92vIUO4z0GomgYfixcLaw1wGaL0NWQ6D3r2NEaOMJ0hQn2RyykHBjtKY8kS7m35okpoLFVa0OspPQqA+54QY3hzpXPQ9+9IlizYiBHU9qmpVPqMNU6C8kb9VBcj/XmlSzxPB4jEy0FkZORbJSUl8j179hzMyMhYk5OTE52RkbFywoQJpz/88MPBbFHAvLw8u7Nnz/qEhYX179mz562kpKR1GRkZa2njdenSpa/u2rWr3fbt2/c+efJkeU5OTnROTk70kydPlq9YseLHNWvWdN+0aZNJKsHMmTP7zJgx4/esrKxoevucnJzop0+fLh0yZEjijBkzzIpDHz16tOWRI0eaLFy48PfU1NR12dnZy548ebJ848aNP2zdurXTkiVLTFIcLl686DJhwoTB48ePP5ORkbGScYxl+/fv36lWq5tMmTIlQMyYlZSUEH379h366quvZty+fftbZp/pH39//wpP0Fq0aFHjixcvNpw8ebJJCbPAwMBrffv2fScpKcmZ6YwpLCyUrVq16pVLly41fPvtt9PFHOPChQuuc+bM6bd+/fq9SqWy0No+3r17137QoEEhb7zxxmWu9WlpaXajRo0aPH/+/J86duz41Jq28/Ly7KKjo98YOnTo5bS0tLU5OTnR6enpq9u0aaPp37//0GnTpr09Z86cPzMyMlaXrltZu3btZx988IHJZH737t0z69atm7Fo0SIzBxkAREVFNa1bt+7D4ODgLK71LzOinRIkSf5FkmQggHYAzgJYDiCVIIhlBEG8UlkdlJCQkKgQeL7M27ZtiwsXLmDq1KkAgI0bN6J169Y4deoUb1PPG7EzrtbMzArrIRBmy5nlSPn2FZq9tyaMnXZEREebGoWA8bh8kRBMg4+rn3wRFyQJrFhhvrxHD+4+sqMCaPgEG7mQySinR9u2ZZuJ//NPZuQCiaNHrTt2XBwV8dG2rXl1kogIyjHB1l7YtIm7tCazXWalBS4nxooV3PoP7CgKIZjX9vp16vfUVGDbNtPttm833kczZpi3w+ckqIjUi+pkpD+vdAlJL0LCGjp27Hhz69atJ/39/XNpfQCFQkFOnjz5do8ePS6uWrWqBXufH374od3Bgwfj582bd52tYxAbGxvw1VdfHe3SpcsTpt6ATCZDv379Ho4bN+74jh07WjL3efr0qevUqVNv2dvbm7w9FQoFGRUV9c+IESPOsfvg5ORUePz48YMhISGPaYeITCZDr169Hs2ZM+fXHTt2tGVuv3LlyhY9evT4Z/LkybcVCoXhrS2TydChQ4dn69ev/+mHH34Q5ZTYt2+fj62tbfF33313RuxM/5w5c1r6+vqOF7Mtm7t379oHBgb2W7p0acjmzZt3169f38RZ8OWXX567du1a/RYtWsxwcnKa7eLiEuHs7Bzh5OQ0b+rUqSPmzJlzWKVSWUxDyM3NlQ8cODD0/fffPz5gwIAHYvqWnZ0tp6NFHB0dZzVo0GD2gwcPaqxcudLsmtE6FV26dLkyY8aMm+JHwEjXrl2vfPTRR3foa6hQKMhvv/323LNnz1z69et3cciQIffp+87R0VG/efNm9aVLl8z+wnz88centmzZ0okdUaPX67Fly5aOU6ZM+c9FSQDWRUoAAEiSvECS5CgASgDLAAwF8C9BEAcJguD5fJOQkJCoBvB8mTs4OGDFihX47bffULduXdy+fRudO3fG3LlzodVqudt6joidcbV2ZlZoFl7MbDV7Gz4jjCs6gc9ZsmWL0RExc6apUTh2LCVM2bAhfySE0LnQGguLFglrTtCkpgKPHvHrMeh05mkcYoUlZTIqdWDRorLNxCcmAlu3MpcIhzDIZKYOho0bgexsY2QF1/FnzgRSUkwNTNrojIvjPg4zvcPPj9sRwKtfwoiiEIIZPcO8B/mccnzpK0JOgopKvfgvGumSXoSEWPr27cv7RDVp0uTxvXv3arCXt2nT5pa/vz9nOGNGRkaNtm3bPuVrs1mzZk8ePHjgzlxWo0aNZwsWLGialZVlVoFBJpPhiy++uMJe3qFDh1tskUWaTp06Pc7IyDDp971792o0btyYV7gqMDDwybNnz1z51jO5evVqjbp161olghUVFXUpLS1tgzX76PV6fPLJJ/6tW7f+0NXVteDixYsb+vTp85C5TXZ2tvzNN98cOXz48D81Gs2igoKCxTk5OdG5ubnRmZmZUatWrdq+c+fOAI1GY7G0ab9+/ULq1auXsXz58r/F9tHV1VWXmZm5uvSYS27fvr0kICDgTufOnUPZBv+YMWM6FRYWKnbs2HFc9CCw4LqGNjY2ZM2aNZ+2bt3abF2tWrWK5XK5np3e8v7772tIkiRiY2NNyr9t3bpVCQCjRo3SlLWPLzJWOyVoSJLMIElyAYB6AIYD8ATwK0EQVwiCGE8QhGNFdVJCQkLiedC9e3dcunQJYYMGQa/XIyoqCu3bt0dSUlKlHtdS3rrYGdfqMDMrNjqBy1mSmmos88gFSVJpE7QBbY3BxwzFj4ykHAJCfaK3HzKEOi5f2sLQoabGPPsa8KHXUyKLZdXf+JNX5ouJMQ1n40ZTB0NIiPhUHy7nk6cnzxFJU8N9yhTucc7M5N5/xQrhaAShlAqu+4xdSpN5HKF7piJTLyQjXUKCGzs7O97YLicnp+LCwkIzrYKGDRvyGuTFxcW2r7322kQunQUXF5eI8PDw4U5OTiYz/WvWrPlh69at7evVqzeVua2rq+uMRo0ajd69e3cd9nFsbGx4+12zZs3i4uJik34XFhbaOjk58ZbEtLGxIUmSFKUpkZeXZ2tnZydaC6EsnD9/3rVp06Zhe/bsabtz587t//vf/47WrVu3iL3d+vXrX/Hx8Xm8Zs2aC+z17u7uJZMnT77dtWvXG5GRke2Ejjd79uxW169fr3vw4MH/lbXPMpkMKpWqIDY29mRBQYFdfHy84bqtX7++/qFDh9odPHhwPzNSxVocHBw4x93W1lbn5OTEuc7GxkaXn59v8kUgk8kwevToU6tWrerEXL5q1aqO77///ik+h9fLTrnPmiTJEpIkd5emdrQHcAHAagBpBEEsJQiiQXmPISEhIfG8cN+3D1v378deAB4ALl68iLZt22LZsmXQ6XgFpsuM2Lx1sQZ4dZiZZRthYp0lN28KCynSMA1odiQElyHPFYq/aBHw1lum2zH1B9iCiAQBTJhgbqgy+0IfPySEGvvly/nPgctY1umoSAGue4J9bp07Wx4ngIBMRkVz0FoR9FiVNxKALzWDbbhzXftFiyiHDBdCfeATzty3z3gvsI81YAB3HwcNsk634nk4+CqjlO6L3A8JCS7s7e0FDfKkpKQ1XDoLOTk50Xl5eUsvXLgQz9x+wIABD27durWFvW1WVtbymTNn/jFp0qRB1ohQvujs2rXL980333w/JCTkyvXr17e+/fbbvCUzr1696tmoUaOHfOsBoG3btg+vXr1qJlpK88MPP9Rev359j927d8dZIzwphEqlenj27NnaAKVTERkZ2X/NmjV7GzVqlF8R7VcEc+bMuabRaGofP368JgAcP368Zmpqau3IyMjrVd23qqJCXTEkSSaSJBkGoC6AFaAiKG4SBHGAIIhuFXksCQkJiQqHYfUMBJAE4B0AWq0WERER6N69O+7evVuu5pkf+9bmrYudcS3PzGxlGSRinCV8hi4XXKUemYZ8dLRxHZ8B/tNPpsu2b6fSEk6d4k4tGDKEKkfJ1ZdVq0yPf/QoEBrKncpBG+Zc66KjTctu0oa3Ukm1rVRSwpTt2gGjRvGPD7PfeRw1rixV77B0/f38KH0JNrRjhwn72rdtyx8NIxSNwHddRo7kjp754Qdg717zdhYtEvdshIQAO3dS90R5HHxinilrRTUr4jnlaqOySvpKSDwPbG1tix88eGDHt/7x48e28fHxPmLasrGxIceNG3fX3t6+6OLFi6JSK/iws7Mrzs/PN0sPoSkpKSEIghA1g+/k5FRcVFTE2xYA6PX6MjlRNBqN/YQJE4YsW7bswOrVqy9YmrGXy+UWVYwIgoBOp+NtaNWqVe20Wq3irbfeCueKbiksLLRzcXGJiIyMbAkA7du3H3js2DEPoWPKZDJSVlpKbNmyZa0KCwvtJ0yY8B5X++np6bV69uw5dvjw4aJc/RWFvb29vn///ue++uqrDgCwYMGCDv379z/L1jb5L1Ep8SGlqR1fgkrtGAlKf+I3giBEBZxKSEi8BKSlASdPvljTbSzr1RvAYQAbZ8yAk5MTTpw4gZYtW2Lz5s0gxUzpM+D62K/okoHlpbINEiFnCa338NVXllMfAOFSj3o9pYcwfz71u1idB52OcjwMGcJ/PL5ylMuWmTuXAPMqEcwKH9Onc/eDfWvp9cZlJElV1oiOpvQ3zp0DugUVgE7V4Os3G65IgBEjhDUm2ISEmI/Ftm3ckSo3bxrFNM+f526PrqLBdX/ExADvvcffF3b0zO3bQJ8+3NvSoqlC0OKYQ4ZQKTpHj1rehwtLzxRdFURsdZ24OCpip7zPKV80TnnFPSUkqhIvL6+nf/75J2cJTwD49ttvG61du9YgKHnx4kWXli1bCrxZAIIgSJ1OV65ICaVS+eTff//lSXoDTp065e7m5pbNXObm5qbVarVmzoemTZs+uXfvHm9bubm58pSUFFGOFzbTpk3r2KVLl8vvv/++KE2Dhg0bPklOTvYS2ubixYte3t7evCVB1Wr1jwUFBYv4olvs7e2LcnJyohctWnQJoBw8CQkJvNcYAO7evevVtGnTLADYuXPnn4WFhVF87bu7u2dfu3ZtzY4dO567jbpgwYK/zp0710StVtdMTExs8uWXX4rW03gZqeyklbqgqnU0BKADYCYWIyEh8RISEwO0bAkMHvxiTbdxWK+EXI6xU6fin3/+QWBgIHJycjBmzBj0798fGRkZoprl+9h3di573rpOq0V+ummVrfz0dOjKKMxZXoOkPP1hGkjz51Mz2Wo1fzlOgjA1XvkqXnz9NRVVQBvg9FiLjcZgQs+ucxnz06aZOxJo5xJz5j4lxdgfgNJbKCuzZ1PX5tdDz/BHgj1MhS6pzshQgjWLn5oZ+ew0E7WaSvGIjbWuGoalkp8AdwRLZKR5WxMmUOPDFY0gtswqPeb09lb6DQ0sXWousspO0UlMNP2Xa5wsPVNM3RJLzsmYGCpKZsgQ6t4vj+OAr19ckShV6SSVkLCWYcOGXVi2bFnPH374oTZb6PDXX3/13LhxY+eBAwdepZc1a9Ys9969e7XXr19fv7Cw0Mwm2rNnT528vDyH1157LZu9zho+/vjjpF9//bX12rVrVexUkHPnzrlNmDDhnb59+15gLg8KCsq8f/++1++//24SFTBgwIB0rVZrO27cuPbZ2dkGF35hYaFs69atdTt16jTYxsamTGkQN27cqNOnT59/xW4/ceLEW3fv3vWZN29eC/b4lZSUENu3b/fbuXNn4MSJE/8qS3+4GDx4cNLGjRu7Hj161JN9jXNzc+WTJk0KyMnJcRw5cuS9ijpmZeHj46Pt2rXrpUGDBo3s1q3bJR8fn6pXVq9CBMN/ykppFY7JoCKfMwGsArCeJMn7lXE8CQmJagTbIqBrJ4aEVH+lN9riHD+e+hpnJJK/AuD48eOIjo7GJ598goMHD+LUqVPYtGkT+vbtK9gsX0REXh7v4QTRabU4FhqKrKQk9Far4axUIlejweHgYNT090fP+HhD+U6xCEVtVGZ/uPQbIiMpI3nRIu7jsZ0Kzs7UMi4jNDLSfIad3t8aozWAUawtPJy6nW/dMjqQli83HT+ZDMjIMM7c840hX7+Z7XAZ43o9NUbzv3aFeeUNAiNqLkBI2zt47+P1JmtiYozjLZNR0RpTplAGKVeExunTVBoKDR310KiRMd2Gvd+KFUaHC9v45auEMWSIcYyYx+DTvwDMjy2XU2N+7Rq/A0MmAzp25F5HH3v2bPPlOh3l5Nq4kbttmYxax3SqWIqEEnK0sCOBxo7lv0/EPqeW+kUQ5vdbWcU9Jf7b1KhRo9DV1bVQaBsnJ6dCNzc3XvFHV1dXrZOTk4l4orOzc6G7u7uZ4CJNZGTk9dzcXNtJkyb1GzlypAu9XCaT6d3d3bPDw8MTJk+efJterlAoyKVLlx747LPPek2fPt2NmY5AEATp5uaWs2zZsgPMkHonJ6ciFxcX3j7Y29vrnJ2dTZLm2rZtm/3tt9/Gf/nll93nz5/fV6fTyeljODk55fft2/fC6tWrE5n7+Pr6Fn3yySc/jhgxIrSoqMjuzJkzmxo1apSvUCjIQ4cO7Z40aVL3+vXrTyouLraVyWR6Z2fnPF9f38czZ878c/369QGurq4GA3fOnDktY2NjO1qqwJGbm+swderUwdOnT+f9q9S8efPkM2fO7Aeo6hcHDhzYPmXKlDfWrVvXo7i42GBXEgRBenp6Pvniiy8O9+vXz6A7sXHjxvpz587t888//2xgl3Tlgh1BMmnSpOSMjIwTH3zwwYBnz565MAVCFQpFcZMmTVIOHz68S6ygpbOzc569vb1FwTAnJ6ci5piy1vHey05OTvlC7X/22Wfn3njjDf/PP//8rJj+vswQ1oYg8zZEEA6gUjUmA2gK4CIowcvdJElavOkkuCEIwhXAs2fPnsHVtVwpbeWmoKAADg4OVdoHiRcAtRpk9+54CqAAgA9KTSa1mordfxFITTVanBxf+v/88w9GjhyJy5cvAwDGjBmDFStW8D6jqanUjCj7Y//uXaOwosDhzMhPT8fBoCDkJCfDRaVCcGws1GFhht/7JiTA0ce66E1LfdRptSjKzDRpNz89HXYeHijKzOTtj1bZCQ0W7cOrrxJo1La22b4nTirQvTuzJwUAHLB8OX96A7NvR49ankWPi6NC8NlOA0sz71zjwEdMjNG5xHR6cBmrNGo1WOduikwGnDkD/PEHlbLB7tPOndypJgBw4qdH6NTTDekZCoOBD5hfY4Dq77BhwI4d5u0sXEhVKqHPkenQ2LgRuH7dVL+DJi6OqtDBdX5czgR6fLmOERJi3m9mSVWdrgAymQNI0rKDh74WbMcHYEyP4CpjKgb2fSL0TN28yX/taeckfc/ExfFfZ67jWkKoX0ePmjtJX8Yypi/L90x2djbc3NwAwI0kyXLN5rMhCKJOQEBA1ObNmx/xleCUkJCQqAh69erVvNzpGwRBKAmCWAwgFcA3AK4C6EqSZFuSJLdKDgmJFxJJfrzscKkVvmjTbRaUIlu1aoXExETMnDkTBEHg+++/R6tWrXDixAne5oSU/K0VpnT08UFvtRouKhVykpNxiOEQ6K1WW3RIcN3eQn2kIyEOBgUhV0OlmuZqNDgYFIRjoaGw8/Dg7M95z9mYkpqAd4d5o3GAJ75Zkmmy7653J+DB/WLOFJagIGEdCJ2OmsW35JCQyylDlSvNQEwaB52eYQk6TSMuztToFgqvF9K6oMt4tmtHpRJERWlBEPEAwgG0gkzmgKFDZQAcALQqXR4PgJrIOaT2wpZtCpPUiVWruMeKJCkHBxdz5wrrDQwezH0OQ4cCv/3G3eacOdz3Gd8xAPMyq3RJ1agoSqBUyCFBEJSWB50ewqWnQC8rq0MCME91EHqmuK49QQCffmqslgJY1tIoS1UQoX5Vh+o9EhISEhL/PcocKUEQRBdQURF9ATwDsAnAtyRJVvscnhcJKVKiCuCaqpO+zKyC/O47PB0/HgV6PXxkMhAv8RieOHECo0aNwt27d0EQBGbMmIEFCxbA3t7ebFuhiAiumVtLPDh5EoeCggy/90lIgHdgoOA+lm5vrj6Kjcxg9ucJfDFXdg9MEXACOpzf/xduRAzF/5K7YTs2goQcBEEZZFSfCrBxo4PBeKRnbdkIRQrQTgHa2GrZEmjf3tRo5YuUIAhgyRLKqF61ihKwtBTxwIQv+oEvUIh5jnI5ZWS3a2cc/+LiYqxYsQLLly/Hw4eClddKqQ1gOoBpIAhbs4gEpmimWGQyYO1a4KOPuM/r9m1u5xDfGKvV1Pmx7zNLY5eYaH4d5XJgy5YCjBzJ/7dp3TqgcWP+aBHaOSA2coYPvogFvufeUnQNV4QIDUFQDpQpU8qeFWdthNbLxMvyPSNFSkhISLwM9OrVq7lVTgmCIOwADAPljGgJSrhyFYCdJEkWVEov/+NITonnjKUYdglRkCSJp1euoOD6dfi0bw+ibt2q7lKlkp2djenTpyOmVNDT398f27dvR6tWrUTtXxY/GK3ZkJOcDIByAuT4dMXIA0vQuD13SXCu21smo8pcduokfIuzjwfAEJnB1JCg199ANyyH2qydN7AEPbAac5ACEsapb5kM2L0baN26AI0aGd8ztOF0/jylD8EMK+cy2uRyaqY5L48ytrjSO+iSnGx9Azpdol07/rGi13ON7c2b1HH79OFPT+AiMRFISKCiQ5htX716FSNHjsRff5VFI6wNgG0AmpksHTyYKpNprQHOpcPBPC++FAOhVA02ll6/M2dyp4ps316AsDAHXuOd7jetocHVBheffQYsWCB+rJYupSIyrCE1FfjxR8rhwx4nPqfbZ58BH3xgOoZlcWr+l3lZvmckp4SEhMTLgFXpGwRBvA0qReM7AHcA9CBJsiVJkjGSQ0LipaG61Wh8kfH1tWzpvihYSOdxdXXFd999h4MHD6JWrVpISkpCu3btsGjRIui4pvlZTVtb9SI/Pd3gAHBRqZAb+S/mIAVfp+9A0w7eWLfsKed+fNUShgyxXCTFWalEcGysybLg2Fg4K5Vm/emTkIAGSi0ImJ/7MUzHbXQycUjQ/fDyMr9d6NQWupQmM6ycLwy9XTtjVALbISGTUU6LiAjzfel0CaGxat+eMo6Z14eZDtC7t7lxKRReHxNDtTl9OvUvfQ1OnTqFjh07ltEhAQB/AegI4JTJ0rg4qn/Mcp5iyqWSpFEIETA/L75SqXPm8O/Dhn09ZTIqcoRO7Vi2zHwfuRx4/XXz9A5mv5mpNMuXm/dTJuPu+wcfmN8jS5ZQbXDBFEMVy9Gj5g4JwFR4kqtf7IiLyizlKyEhISEhUdlYoymRBeBbAK+QJDmAJMk/KqdLFQNBEO4EQSwhCOIyQRDpBEE8KP25ShDEOoIgBGvclrbRliCIQwRBJDP2TyMI4hxBEB8QBCFnbU8QBDGJIIgrrGPeL91nQOWdsUSFwJXo+6LpIUhULKwvfu2G75Cenm+ySXp6PrRaHfr06YOkpCT069cPxcXFmDNnDrp06YLbt2/zNG7ZD8ZValOn1aJGs2ZwUanQZucJzFzSyGDkk5Dj49luVmsYWHKG5Go0UIeFmSxTh4UhV6OBnYcHavr7GyInvAMDMfrPXXjbzdw6ImEDgDRzWIh5zLi0N4Ry4PkcC3l5lvflGyuSpGbaaeNPqFwl7QDhi3phV1UgSer333+/irfeegvZ2VwTn10ArABwHMCl0n9XlC5nkw3gLVBST6bncOwYFfWhVlP/inFM6PVUNAvXeHE5iEaMoCJS6AigRYssRwCFh1Pb0akfkZHUON+8yZ12Mm2aqRYCrekhdA7Tp5s7o8RqLMycSUW0WCObw+fTFCpdKpdTVUKEtGiYbZSnRKiEhISEhERVI8opQRCEAsAEAN+RJHm3Ig5MEIQdQRBbCYKo8LjuUmfBbwDyAHQDUIckSW+SJL1BTR1dB3CSIAhHgTbaglINWw+gKWP/uqCqjLwLYDFrt1BQ6S1vkSTpw9jHF8D7AL4iCEKgGJlElWNJkVDi5cKSoCnri1+rJxA64W8EddgPjYaKZtVochEUdBChoceg1erg5eWF/fv3Y/PmzXBxccGpU6fQqlUrbNy4EVzpckJ+MD6ByR9LE+/f/f133M/35XBqEJzBPezbmw1fUBBXJAQtank4OBhFmZnoGR+PvgkJcFYqAVCRFSt+6wuCMD1nuYxE3TrF6IllIFBiON/yPGZ8QqFcYyuTAU5Olvelx8qSE+fUKf7wfqYDhAuuMpwkWYwPPhjB4ZBoBuAMKCfEVFBOiBal/04tXX4G7HQNyjExEoBptTK6JG23blR0CPu1N3cu933ZsSO/KCvTgD99Gti2zbwcaGKi+X5M6JKcbCPb2Zn7WtKlRwGqT56ewpoZcjm1D9sZJeSgYt4jMTFAhw7io2GEohj4Sp3KZOKFJ6XgPgkJCQmJlwGxkRJeoL5q/Cvw2N4ARoD6qqpo+gO4S5LkFyRJZpIMS4AkyWckSa4CcATAeIE2vgAwhSTJI8wKIiRJ6kmSvAFgOIBQVsRFCIDlJElqmA2RFFcALAMwqNxnJ1G5SPLj5Sc1FfjzT+D+/aruCT9iYp5ZX/yZcEIS6iBZk4/g4MM4efIBgoMPIzk5B0lJWcjMpF4VBEFg9OjRuHTpErp27Yq8vDyMHz8evXv3xoMHD0wOIeQHK8rMRFZSksH4f3DypME58OTqVcgVCquCe1JTAZWKMhjj4sTvxxUJQVfbqOnvDzsPD8gVCrOqH43a1saGdTrICF1p+yRGjCTw+YMD+BWzAMgwY1pJpT1mXE4YvZ4yKsWEuIeHU1EEfNAh9kIz8+fPU/+KL+izAnfu/M1a9jaA8wDaW9i3fel2b7OW/wUqmsII+1qzX3tffy3sn+U7Hz8/qt0//+RPfxEaez4jOy+PO91GjCOKec70OXA5oyxVweGKihGKhrEUxcDnNDtzht8pwkYK7pOQkJCQeBkQJXRJEIQvgHsAdgL4t4KO7Q5gCoDeJEkeqaA2AQAEQXwB4BFJkmsFtukDoB9JkmN41qcAaE6SJK+4D0EQ+wGsJEnyROnvwQD+IUkyi2f7XgBGkCQ5wopzkYQuJV4sYmJAjh2LpySJAgA+mzaB+OCDimmbreZWVnU3sYKmHNtpZJ4I9luBZI0xhUOlcoFa3RtKpbPZofR6PVauXIm5c+eiqKgIHh4e2LBhAwYOHGjWJS4lfEsCk4B5BYcNG8yNJC4xTYB7P65h1Wm1KMrMNHE85KenGxwSfMN88ybgoNDi6YMceCg90KGD8LBXxnuGq2oDXVHCw0NY+iQ1FeDTaZXJgIMHKR0JPuiKGpGR5kKmqamAUsnslxaAEgCzykYzUI4Ga8akAEAATNM2vAGkAKCuVUQEJcxoCa77UkiYlbmOj/KIXXL1h33PsJ+HRYsovYfyVpmwVB0kNZWKfgGoe+rmTcuVWMQ8u5aoiDb+a7ws3zOS0KWEhMTLgOjqG6VVN/YCMP/iLh/FACaQJJlscUsrIAgiBsARkiT3CWwTAGARSZI9edY/JUnS3cJx1gI4Q5LkdpH9+gCAK0mSPDJZnPtITgmJF4dSi4LU6/EUlGnkI5OBSEkpfwoM2xIaOdIYH25t6VZr6jZyfPGfbPIOgoIOGTZJSOiDwEBvwUMmJSVh5MiRuHjxIgBg5MiRWL16Ndzd3S12V0zpT0vlRvkMPcB0v4qqiMvVjkpledjZ75myOEO42uc6Lg1BAJs2mZdGvXkTuH6duxQmAISGAvv2Wa7OIFSBYvRoYOtWek08gMGsvc/AcoQEF2dAZSsyiQMQCoIANJqyPZKW7iW+EpZsmNec7QSz1sjm+ttUGeUuhSqyHD8OzJplvM4EASxebHRG0fD5Psvb1/9yec+y8LJ8z0hOCQkJiZeBXr16NbcRs2Fp+oLAXFC1Qw5wyL6bUgJA1PmXtw2CIGSgUl/GAnjPwrZ2AOwYi1zK00EJiecKn7LgrVvl+1LmioM2WnLGuOiQEHHHoWOe2dYCV8xzeDjVbukXv0bvjrDgwyabhIWpeSMlaPz9/XH27Fl88cUXWLRoEbZt24Y//vgDW7ZsQXeGxcw20PgEJpmREoAxJJ0LobxzZlg4X7i52GFlngNXO6dPmw87QKU4sH1BgFFTIyspyaz0aE1/f/SMjxflmHB2NncMMCFJ0/MUM9vfv784hwTX+ep01FiQJGBa0ORn1t5dUDaHBAB0ANAZwJ+s9kMxd27ZH0ehe4kkuceDyylDP2p8TjDGI1emvgo9D2WFTgeiHSYA1e/XXzffliQpbYy5c6lIDaaDhUu/pLx9rYzzlZAoD7/++qvnl19+GXj58mVVXl6ek4uLS25QUFBSbGzsH+7u7iVV3T8JCYnqRXmNcgkeSittfFv6qyuo2NvRIqJC5gD4jL2woKAAtra2FdtJKykokCq/SljAzw8gCJClqRuFAAoIAoSvL1Ce+ycpybL1p9MBV65Q8fiW8PCgYvcnTTJaQ2vWUMu5+unhAXh4ID09Hz167MPduzmoX98FMTFdEB5+AsnJmejadR9+++1d+Pjw6ucCAObPn4+ePXvigw8+QHJyMnr06IGJEyfiyy+/xJ49Dpg40Vh+ccXCp3Df0BU5d+/CpX59dImJwYnwcGQmJ2Nf165497ffzHQcuCi9LGbpC+zLwjXM1gyrpXaysoAFC4B580zXzZ4N9O1L9ZP5nslPT8eDS5eQc/cu9nXtajj/nLt3odXr8TQ11eL5b9kCw5gKodMBvxzIQudeNU0qYvDRtStw4IDwNjIZ8NVXlGHKZjA7IAIAwFaB7C98AIsMgKlTIhFAAVxcKOcCV0TN7dvAK68Il+3ku5cA7nVffQXMn2/+qN28SZW3pNHrqeojXbpQx6HvOUuvjuf5t2nYMODVV6k+WoIkKW2Or78G2ralIoWoe7xi+yTmulXn9qvimC/L90x1PY8pU6a0+eabb96RyWT6Ro0a3bW3t9deu3atweHDhwODgoJqJyUl7RDaX6/XY/bs2a127drVITs72/mzzz47NGPGjJvPq/8SEhLlZ+DAgcGtW7d+8Mknn1wTs/1/wilBEERjAP8D0IskyTJpYhAEEQmgE0mSfcRsT5LkfgD7S/e1AdAIwBqCIHKF0koARAFgpne4AEh1cHCoFqGG1aEPEtWYRo2ATZtAjhuHIr0eIAg4bNwIolGj8rXr78895cxEJgNq1gTE3qMffkiJAVgxHevnp0DLlt6QyRSGyIjjx70QHHwY/v414efnDoWCp7QFg+DgYPzzzz+IiIjAhg0b8M033+CXX37HrVvbQJJtAVAGzYz59tjSPRgesuOGSAGv48cNkQLufn6iIgVKL4tZSDz7snANs1wONG8uflgByinBhm6Hq7t6PZCWRvUnNRVITXWgIkVUKgwsPd+c5GT82qMHAMCDpanBR2oq5XdiGslCERPhk70xeVwuSNLN4jnWqWM+VrTgJe1UWrSIigCZN8+yk4OC/c3dRsxOArzG+v0WAAdERlKOEmZqTnS0seoFV9oOM4KH715KTQVmzACWL6faYaZejBxp/qj9zdbzBDVOFy+a35uWcHBwsCgxU1YJGjYlVs7xfvopv4ZGeamodKuqar8qj/kyfM8UFxdb3ug5M3/+fP/Vq1f3btCgwb39+/fHt27dOgcArl275tSxY8dxV65cabh27VrVpEmTeCfpvv7666ZxcXHtYmNj93br1i1TJqZmsUSFsmrVqldmzJjx3rJly3ZNmTKFv675c0aj0dhPnDix8/nz5xvm5eU5kiRJAICjo2NB8+bN765Zs+aP5s2b89a92rhxY/0ZM2bwFh0oKipSTJky5aelS5f+AwBXrlxx+uijj7pfvnxZVVxcbJgdtrW1LX711VfvrV279lhAQIDF1CmtVku0b99+cN++fS9//vnnVwFg3bp1DaZMmTLMzs6uiG8/uVyu++OPP76jnyOahw8fKnr06DGoR48e11etWvWXpeNXBXl5eXbPnj2zs7wlxX/iKSdJ8gZJkqqyOiRK21gk1iHBsW8JSZLXAISDquohtG0RSZLZ9A+AHKHtJSSqHbSM/6FDwI8/UtODlksOCMNVomLUqLKXVWC2KyS3z0KhkCM+vicSEvoaUjWUSmckJPRFfHxPUQ4JGmdnZ6xe/Q22b98Pb29v3Lx5DSTZAcCnAKi/TzodAZ+ZG8xKbfZNSBCdusCEmU5Bo9NqkZ+eDoA5zJQFXZZSnXRJRzZRUVQ7VOYMq0yoHPB1eYhNG0rQuLFpQRRnpRLBpjkOCI6NNXFI8FWC4Eo1oB0G3MixZqOzWRlTwLy/HTua35J0+/S/kZFUaL84hwRAX3cjNcTuyAN7/0LD/5iVIObNA2bONE+3SUykxjU62rRQDWBa+tPFBZgwgVoXHU2tj4gwLV5k5aNmNcxiOkoldT7M+0FMsR2xCFX44KKySnRaqu7Btb24CjBla78iqIpjSlQcf//9t8vSpUt716hR49nx48d3MA2ppk2b5vXo0eMiAPz444+vCrWze/fuNvPnz/+1e/fukkOiivD09CysVavWY09Pz0LLWz8ftFotERgYGObg4KD9888/tzx9+nRZTk5OdE5OTvT58+e/e+WVVx537do1/PHjx7yh5ePGjbtL78P107Nnz/M2NjaGv9qhoaH969Sp8yw5Ofkb5nb3799f06lTpzsDBw4cUlJSIlCDi2LIkCHBly9fbpSbm2v4cHvy5Ildu3btrgj15+nTpyvYDom0tDS7Tp06Db9//36tvLw86z4EqzEv65MuRuvBpnS78mBVGyRJpgCoQxBE1eZhSEhUNn5+wJ07wDvvAD16lN8KAMxrFm7ZQllETAvzOXzBKhRysxQNHx9HqxwSAKDV6hAaegyfflqIn38+g3ffDQX1OlkAoDWAa5DLgcZNbc1SFBx9fKxySNAf+kyDefx4ICWZ0mw4GBSEXA1VyXjIGxqs9A3C4k7zcPtfrdUzlFyOAIAyXNVqygkyucVayEpfnXI5sGphJo4OGIDxE2SGPtKX8sbZNE5NDbq/QsYmn/FIktRxuc6NhBw9yaWM/pEYNYrgLI3JvCV37jR3PogRfASoPq5bB9jasicUnohrgBf2/vYmv+l0VGrBwoXme+p0lEOle3duhwVAhde3bw8MGUKNCXObFSvM22TTqZO5g4ggKIePNbANWZI0OlJiYire0GX7SAlC2Ekhk1VOiU4hfQ82ZXHKWNN+RVEVx5SoOKZNm9ZNq9UqPvzww9/q1q1rNvvr5eWVBwDp6enuQu08fvzYvX379pmV1E0JEQwfPjzt/v3764cPH55W1X2hWbRoUVMvL6+ncXFxxxs2bFjAdFjVrVu3aNOmTWfbtGlzc/bs2W3LeoyHDx+6NWjQIBsA7t27Z5eenu65Y8eOE2wdFHt7e/3y5cv/lsvlut9++00wwTUqKqrxuXPnGnXu3PliWftFk5WVZRMYGDgyICAguWfPnuVurzrxsjolUkHVPxOiDgCNwPqnBEFYqjZiaIMgiJoEQfwiom/VL9ZOQqKiSU0Fpk41/l5RzgL2dGturrklaM0XrLVThxVIZmYRkpKykJycgwEDTmH27FVwcfkIlPzMdQBtMXTot/D1FT3Nzgvfh/61v3OQlZSEnORkHA4OxoOTJ3E4OBgKzSnUfbAbXg7C34Rcw8fnCPjwQ8ogUjWyRV5aGhaiPub7DMO5+ETU3PA67mgUIFl/knQ6YHv/mchJToaLSoU+CQlwUakM/b154aGgsUkbj1z90emAmBjzsZWhBD2wGgtRHxu/uIadOwl89RXlfIiLo5wPISHG7elbslMn62bPmbzxBlXho7iYPXlY3ohMdn6EafsyGeVMsBadjkrh+OAD/igQMY+hnx/VDj1uMhn1u7XRFLdvczuA6Pvh1Cl+Q7esrwCmQ0qjAVJSqP/fuwd89525r3TXLuvaFwPXs8al11tWp4zY9iuSqjimRMVw7949u1OnTrV0dXXN+eyzzziS+IDCwkIbAKBD7vkoLi62lcQwJdhcvny51uuvv35XaJvu3bsn//vvv7XL0n5GRobt7du3/YYNG3YPAG7duuXk5uaWKxSt4+HhkX3jxg3enE+1Wl1z6dKlb+3atSvOzs6u3Pe0Xq8nRo0adXrPnj3Hy9tWdeNldUpcBtDDwjY9SrcrUxsEQTgBaAvgRumibACtS/Uj+PbxAZBLkqTkmJB4ubl5s3zOArGU5wvWUrx3JePj4wi1ujdUKhckJ+egc+fDyMlphTq1o+Dv3w1AAXbsmIhevXohLa18ExV8w+Tf3gO91WqDoX8oKMjgAOitVguKSPLNvAo5AgBAryfw/ZMoOCnroW76Lvw6oD/OJyvhXseNI62DRGN/e0N/vAMDDf2t6e+PlMyaFmdVw8Opko3m/SEBsL+LSfRHJGogDVcQgvGfvYohQ6jzmz8fGDoUht/ZM81cGUZiIAjg6FH6cQlgrbWgpGmR/Sa/tWvX1qR/06dbk1piypdfCq8X+xiGhxsN+pQUy9oBXE6EV17hv990Ou5IBrmcSk8pT0oH00fK/H9IiHkEyKxZxtSWioLrnuNKtypr9IHY9iuSqjhmRVCF/u1qw+rVq5sUFxfbyOVyXXBwcN/AwMB+7J9ffvmlJQC4urrmc7Vx4MABb1dX1xlPnz51bdas2ccuLi4RLi4uEdHR0QaVGT8/v/EANfvcuHHjMBcXl4hBgwYF0+s1Go3922+/HeLl5WXY38XFJcLDw2Ny586d+168eNGsqp23t/dH8fHxPg0bNnzf3d19mouLS4Svr+/4oUOHdikpKSEmTZoU8Morr7zv5uY23dnZOcLT03PymDFjOupFhMPt3r27TmBgYD++9RkZGbZKpXKsxYZ42L9/v3fr1q2H0P12cXGJcHNzm96gQYPwRYsWNWZvHxwc/O7atWtVXG3NmzevRf/+/Q3lwLy9vU0KYpeUlBC9evXq5eLiEuHs7GwYW/r//fr16yFmTMrKw4cPXX19fQXT2hs0aJDz6NEjy8JQLEpKSogBAwa8/c4775x3dnbWAUDHjh2f5uXlOQilZ2RmZrq2atWKM6wxIyPDdvjw4UNmzZr1vy5dupQ39BEA4OnpWfzFF19csXY/S8+NtfcRwP+s0T+///67VRErL6vQ5Q8AIgmC+ALAagBZJEl9ehEE4QpgFIB3ALQSaONTAPsJgigBcKy0LCpd3lMFYCmAvSRJPgQo3QiCII4CiCYI4hOSJE0eGoIgfAGsB7Cm4k5TQqKa0qiRcB3AioJdo0/sFyxfvPfy5aaqahWljMeDUumM2NhgBAUdMiyLy1iLjgtmYW1Bf8yePRu//PILWrRogW+//RZDhw41Ow0x3RMeJkqz4VBQEADgCXzhMfUgnsqU4AsVs1Q6NCSE0ilYsIB7f52OQJ2I9fhh8kpsx0aQkEP2gMTIkQS2bWOKJBJ4b+R6FGVmGhwktKaGnYcH0jNsRVV2bdfO9PxlMhJ6Pdc3BgEPWSpabPwZ4z/oCaq6tHAF2pry9NK+KKBSURlFeXlUH1atEjZEzUU3ewH4nvH7CQBnUbayoGdgWnkDOH++FxYvpsaDHiNalLIisdaQFFvOkk8Akb6/ucq4MvU/mPf/okVGYU+g7OVvueBLYZo9m3JsVeSrREz5VGsqIJel/YqmKo5ZHqpCDLQ6kpCQoAKAJ0+euJ86dcpdaNsGDRpwhuH179//Qf/+/ZfVrFlz6sWLF9crlUozPYNnz565jBkzpuPVq1d9oqOjf+7Ro8djR0dHPaONPnXq1Hly6dKlDT4+Plp6+dOnT21mzJgR0Ldv36G3b9/+jqkb8PjxY4/o6OhOe/bs2de2bdtsAEhOTnbo1avX4ICAgDpOTk6FR48e3d2wYcMCADh//rzru+++O2L9+vUPPvrooztC55qdna3Iy8uz51tfWFgoz83NdRJqg4+MjAzbsLCwERMnTvx13rx5e11dXXUAZWDv2bOnzuTJkwfWrl274P333zdEhk+bNi0xLCxsWMuWLbcwDeXNmzcr169f3/2XX37ZTC979uyZK/N4ixYtapKamlrzzJkz69hiksnJyQ6dO3cOW79+fbKlMSkrOp1OJqdFr3hQKBR6nU5n1aT748ePbd98883+CoWiJCYm5iS93N7eXv/KK6+kDRw4sPuqVatOKpXKQjpqIjs7W75w4cLmmZmZ7oGBgWYOB71ejz59+vRu167dv5GRkTfY62kePnxYo2vXrr1v3LhRNz8/34GOInJxcclr3br17bVr1/6pUqnKXWZH6Lkpy30E8D9rNL169eplTR9fykgJkiR1AHqCioM+DuA+QRAPCIJ4AOAcAH8AQSRJ5gEAQRDdCIK4VeqwoNv4G1Q9tfEArjH2TwWwC1Q1j1msQ08CoANwkd6+9CcdwFEAv0BySki86IiZEvLzA1auNE4XVuZ0F1trQszXIJ/VwIxrrkhlPB40mlyEDTtmsiyMHI3UCXMxecAAnD17Hi1bvoYnT57gvffew3vvvYerV1Oh1eqs7h7fMOVqNAbNhgSMwRykYNBkf9SrR/K2KTTzSveLzyEBUBEQVxZ9YnBIAFQExfbtJP74w7SPcoWCV1PDmllV5vmfOUNwiFlSBHzxBfZfDwHtkOBDpwMun3yIg0FBiHh9A+rVI9G9O6W1ev481YcpU/hFNT/7jGtdXwDsqNMxAKz9HikApavMxBsk2Rdz5hgNPT8/YPFi8725+kwQVBUJIQjCXOCyvKSmUmkz69ZR5UL5UhDoiIuICO77ISSESr2Ji6P617Zt5WkX0D5ZNnp95WgjWBIRLW/0QWWLlFaXY5YFSZjTyO3bt30B4Oeff/6GJMkv2D+ZmZlf29jY6ACgU6dOZQ7/KywstEtOTvY8c+bM/t69e2cwHRI3b950vHPnTp19+/YdYxtJ7u7uJTExMWfkcrnuwIEDJineOp1OtnLlyt9ohwQAqFSqgokTJyZcvXr1lYMHD/5EOyQAICAgIDs0NPTs4cOHBQU7K5uEhAQPlUqVtnjx4n9oQxIAbGxsyOHDh6d98MEHxzdu3GgyW92nT5+HM2bM+Hno0KFDHz58qACAEydO1JgxY8aADRs2xDHHgM2///5b87XXXtNwVbdQqVQFa9asOdikSRPD/nPmzGnp6+s7vmLOtnK4ceOGY0BAQFjDhg0fnjp1ar+9vb3JX4YFCxac+OWXX9o1aNBgtrOz8yw6MsTd3X3esmXL+qxevTqe6eCi+fDDD1/Pyspy2bNnj5rv2E2bNn2an59v17Zt29Rjx47FZmVlLc/JyYl+9uxZ9PHjx7fa29uXvPvuuwMrIvpE6Lkpy31U+qz5cD1rZaVCnRIEQbgSBKEiCKIOY5noUiAVCUmSz0iSnEWSpD9Jkj4kSXqX/jQhSXI8SZIPGNv+QZJkw9JqF8w2/iZJsk9p5Q56/zokSbYjSXJjqfODfcwZJEm+wtjeu/T4/iRJrmHvIyHxQmGNJTxyJHDuHPD77xVrpXBh7ReskHy+TkdNd1fyl2ZKSg66dDmEZE0+VHiEBCxBPWQiGV4I1k9FSsI1fPJJKnJypmHq1DmQy+XYvXs3WrZsiQ4dFmHsWB1n95jVNGjy09Oh02rNhik/Pd1QblOr7IQdsu9MnATjx5Ocp8yXDuLkxD1bbbodiTE15uDp/WeGY9HodASy7mVadSkt+aSYPjT6/Nu1A5YsIcCuqkEQerQOaYzly2ERuYzE7VkDoEkuwqp/PjJEXuj1VCbQ0qX8Rr9cDjRrxjVOCgDTWcuuAhgE8Y6JgtLtr7KWTwOggE4HxMcbb+WuXbnFJpcsMTViN22inALsbWUySj5m3TpKW4E+74ogJobKrBoyhNLcsJQR5udHHZ99P9CvrSFDqEiFo0crV7vAmI5TOe2XhbL4biUsIwlzUhQWFsoyMzNrAEDLli05jdpt27bVKykpkdva2pYMHz5cSNNNkJKSEpspU6Ykcq07f/58jdq1a2cqFAre2XSlUvnoypUrJqWJbGxsStq3b/+UvW3z5s2furu7P/P09DRLu27YsOHTx48fm6WCPE/69ev34NSpU3F86zt06PDw4cOHZmWcPvnkk2uBgYHX3nrrrX537961Hzx48HuzZs3636BBg9K52qFp0qRJZmJiYoOTJ0+6cxnKAwYMeNC9e3dDFExUVNSltLS0MigXiePYsWMeHh4eU37//XdBoUk+9Ho9+vfvP6B3794X4+LijrO1I27cuOE4bNiw92bPnn3o4cOHC/Pz85fk5ORE5+bmRj948CBq3rx5+5ctWxaUm5tr8jGzZcuWuvHx8Z0OHDiwl+3kYNK/f/8H9+/fX798+fK//f39c2nnhkwmQ6NGjfL37t37+5MnT1wSEhLKW4pL8Lkpy310/vz5Gt7e3oLPmrWU2ylR6oTYRRBEJiip75sA7hEEEVS6yb8EQSQTBDGmvMeSkJCoQsoyJVSnTvWc7hISPpDLKYuiEr80tVodJk06iUePCqH0tYeaWIG6yAIJwBFFaIIHyHD2RlJSFu7cKcChQy0QFbUXtrY+0Ome4O+/54MkJwIwTlbodMCNa8Vm1TRyNRocDArCsdBQ6LSmzmw7Dw/U9PeHi0oF1eL9ZikNOh3Becp8M6+5udwOiRUrKP+UWg3c/rcYAztdQwOl1kxDQkbo0Ki5Pa9ThYYdrMPnkxLyoU0YrMF7NaJABbcBBErwgcdcPLr90GI6gwwlGKb/AArNKeT4dDVzrgBUOdDUVKODgr7V6LHiE8YkiKlwQj3W0iOg9CbOCncMZ0q3O8Ja3gaUU4Ji+nRqPEaPpqpncFUNadfO3Ig9etT8iCRJBUVNnEitr6jc+tRUygkipHnBNPLZx6X343ptjRtHiV8uWlTx2gX08bj6WtXaCC9K9MGLhCTMSfHgwQOFXq+XAUDt2rU5Z0337dvXHADatGlzjTkbWxaCg4Mfcy3PycmxtbOzE9Rts7e3L2aWZQQAGxsbHZeYoZOTk87W1pZTnNDBwUFXXFxcKWnwK1eubMiVo+/i4hIxZswYQ30imUyG5cuXN65Xr94Hrq6uM9jbjhgxYmRRURFnqa5du3Yd1+v1slatWn3Uu3fvC0IpBjSRkZHXmzRpcr9Pnz6jXF1dTY7l6en5cd++fXsWFhZabVuKPV82PXv2zMzMzFzFdIRYw5o1a17R6/XEqlWrLnCtX758uX/79u2vf/7551dr1aplcl/VqlWr+PPPP79at27dzIULFzajlyclJTlPmzZt4PLly/dxRZRYg0wmg6+v7+OLFy/WLE87NHzPTVnuo5ycHFuFQlGhYrTlephKdRIuAngIYCGAZAC2AHYDoFMh+gGYDGATQRAZJEn+WJ5jSkhIVBFCU0Iv4lcunbi8ahVlNTPFFmiLsSxJ2CLIzCzC1atPkJ9fAnja4d6sRQhb/BAaeKAuMqFt2gJDJidh1apOmDr1FJKTczBrVg6AuXBxOYycnF8AbADwO4BtANpDJsuHt8szXGJU0wiOjYU6LAw5yckAgOTLT5CaXdugQSFXKNAzPh5FmZnI0tW26pS58r4TOX3wQGAgZeRSKOAXH49O6emQ732Gj2e7lw49iRULHuPmnPfxz40b6K1Ww1mpRK5Gg8PBwajp74+e8fHYsk0hKn9bSPeippyKEGn1pAietdLRYuJHKIqhnAzJs/+ETJbAqTkhlwPrPr2GrM/eQA1Q0ccDvpmKqEHmjwYdqu/nR6UUDB1qniNvqnMBTPrgGTx/HIXb92thN1JRBOZ3+1UAHQB0BpVZ+BqAGqDmAv4GJWppqiFB4QaC2AaSNK1EzdbJYJ8nM8WDOZ5sJwGzhCsdSVERufVcWrlspk2j+rduHTBpEnVcOpKDJKk+TJ/OfW2GDKHWjx1LVS3u2JH7NWatrAxfZtiuXUBoqOX9JV4syipr9LLBNOhzc3PlbKfDrVu3HM6cOeMPAJMmTTpX3uO97JU5pk6demvq1KkWpXEPHTpUe+3atd23bdu2+4033njMdqxcuHDBtU+fPsO49tXr9dDr9URRUZGiQYMGz8T0SyaT4YcffvgNwG/sdWlpaXbvvPNOvzlz5rRasWIFu/STIGLPVy6X60tKSgSdHlqtViaXy0XlOxw8eLDJwIEDL/JV17h9+7ZnQECAoIu9WbNmD//66y9fAJcLCwtl/fr1GzRw4MAzo0ePviemD5aws7Mrzs3NtbW8pWX4npvy3EcVSXkjJb4C8AxAa5Ikl5EkeQDASeYGpSkQ7wNIADCxnMeTkJCoKl7GKSG+eO9KloA3VN5QOkKjyUPQYj2S4QVVHVvs+7E3bhe64M6dHAwY8AvGjGnC2FOBxg3eR/v2X0MmqwkqMC0QQCRq1tyHuVGXEHL0N0M1ja1BQ3A+WQmtshOyxp9Dk9drm0UN0JoN7FOWyaiZZEsCmuwKrVzkccwVnJo8Ge7ftsWVk2lQq4ErJ+/DY0N7pP/xh1mJ0pzkZGQlJSH58hPRwTpCPjQ7Dw+cc5mKOUjBmow1mPBFUxATD8FFpUKj1p5Y/63OrHqGXA6sWpgJ563vGhwSAHAjYii+jDQX1WY/Glyz1MyQ+uvnHqJgfxQ+u78PW3EOWhyHLcE1wfUnqKiHbqC0mruV/s7tkACOYM+eZqJSUgBjmVAxFRzYMAOMypvxxKfLwOznlClU+xMnmmrWMh0ly5cLVYKhznXIEO4okLLIyvC9JjvyzvUZYUd7SBUdXgyk1BhAqVQW2tvbFwLAkSNHzMoxhoeH9ywuLrZt06bN1REjRlTaHe3k5FSs1WoFJ1wLCwttnZ2dKyQHXgwODg4lxcXFvCJFGRkZnJEMYvjpp5/qdevWLSkkJMTMkAQAnU7H+xbt27fvmw4ODtrDhw9/t2TJkreOHj3qWdZ+AICvr2/R0KFDL54/f15ZnnaE8Pb2zr5//z6fBjcA4M6dOy5eXl6inCw3btzwe/vtt3mdB2KcGzKZDLSw5rZt2+reu3evzu7du4O4oj5+++23tmvXru3VokWLYQAwbdq01w4fPlxLqH2tVmvj5ORUqVUby3Ifubi4WHzWhO4/LsrrlGgHIJ4WjLSAGpTApISExIvIi1qrTQyWLMaKVu5Tq6Hcsw6x974wWRUb9xbaveOPPXt6wsaGQEkJifnzTcMPLl56gtQbntDr58PRsROo9IPFePx4Pv766zKKnGohODbWIFq5HGpMuZeAjyM9LBqM4eFAVJRxtnv2bFNDjK1XkZoK/G9vJlKSqe87sX6rosxMZJVGdPw1rAua2J7EX8O6IDclBfYeHnBSKjlLlKZm1+Z0NJw+TQkYxsUZz0moL+kZCqy+PImhnwFMmeuBgLhT6Bkfj7HjbQyXnk47uXb2IWpueN2gv+Gx+jK0yk7ISU6GancAvp7/zCxFQ8yjQd96iho18N3jhYY+kQhECfkX6tqWSZQdVMrGKcjlnUCSQKaI4FaCAA4eBFQq83vjAmdwqzDlyXjy86N0LLgcE3I59Sry87McUaHXU9ESQiVaSdL8eSirgCGXcy8qyvK9wHaAjB5d6Tq7EhWIlBoDtGrV6iYALFy4sCtdQlGv12PYsGGdT5w40cbd3f3Znj17KjVaOiAg4MnDhw89hEo43rt3z7N58+YVUp5RDK1atXqakZFRk0+scM+ePQ3K2rZOp5MRfKrNAPbt21efa/mkSZMCrl+/7nf06NGDb7zxxuN58+b9FBYWNkSj0fBWCQGAN998863NmzfzOh1kMhmp5y5tVSG0aNHi4ZkzZwTHS61WN3j11Vcfimnv2bNnrq1ateItMapUKp9cu3bNS6iN69eve/n5+T0BgLFjx6YUFRUtzM3Njc7JyTH7ef311698+umnP1y+fHknAGg0Gvcff/yxPl/ber0e9+/f92jZsmWl3q9luY/atGnz5MGDB7zPml6vx7///mvVG7G8TolXAIgNT3kCc1lxCYkXEwtTWFqtDunppmW409PzodVWsc5peafeXvYpIbFiBWWFYXloZkUhjBxtsjps2DFoNLlo184L69Z1NtvdBjqUQA7500wofT2Rnz8KwFgAjgA0ePToE2zbsARxQyNMK1uQhEWRQIA67chI05lmpoAmU6+COhUSb4d6oMErNti0oYTXbwWYDqujjw96q9WGiA6m8+Gd335Dj507TfoVHBsLZ6WS09EgkwGDB1Oz3UOGUMKImzaUoKY8ndUXEuu+KTEYsub6GUBaTm3IFdSkFVMUs1s3QNWiBmr6++O852xMSU3AoMn+mJKagPOes1HT3x+zP3FASorlR4PvETx7XgGS9SeZRHN8ufI2or7+GrVri/vz6ebmDYJYDOAMZLJmhlSFr78WtTv69DE3hFNTKQeVJdgOhPIGUoWHU+KZtMOJdhAxx9dSRIVcTkVU3L1LtSGkb8t8HsojYBgeTkUZ0elQkZHCTgUuB8jWrVJFB4kXi8WLF/+hUCi0ly9fftXX1/ejdu3aDfL29p60a9eu7l5eXpk//vjjFmYFi8qgcePG+XXr1n0wcODAHunp6SYRCE+fPrUZO3Zs++LiYpv+/fs/4GujovH398/18vJ6Mnz48C5ZWVmGmWWNRmM/efLktlu2bOlS1rZ79uypOX78ePMLFy6YlO68d++e3bRp017bv3//a+x91qxZo9q9e3fHI0eO7KbD+WfOnPlvjx49Lr3zzjsDhBw6DRs2fLxu3bp2N27ccGSvy87OlsfHx7d87bXXKu1NNXv27OtZWVmuoaGh3W7duuXAdPSkpaXZjR8//vULFy68GhUVJcqNrtPp5M7Ozrwf5rNmzbr8559/tli1atUrWq3WZFy0Wi2xcuXKhn/88UfLadOmXS7L+YSGht7Yt29f+wMHDniznVZZWVk2o0aNCnJycirs2rVrVlnaF0tZ7qPGjRvn169fP33AgAEmz1pJSQnxww8/1O7UqdOAwsJCq6KAyuuUsANQJHLbEliqsSYh8SJgIaZXq9UhNPQYgoIOQqOh4tk1mlwEBR1EaOixqnNMVFSJy5d1SqiyS4AyLI90uCIYM6iUjdLKGyo8QrImH8HBh5GY+AgLF5qnZK7BTjTAIzTBA2ydQYtNBwD4DO3adUNRUSFmf/EFolOvg2SkGHDBZTAKGWLM6IYtnd/DuHGkwbAnIcOHE+VITTX3WwHcw+qsVCI4NtbkWPTvdIlSGnVYGHI1Gvj5UUVdmLD7S5LAhAkEvu8wCEPe0ODuXeDI7odY6RsE5ZGB0Gm1cOYJ/nQSCEqQKxRosiIeMVlRjEobBL5/EoUmK+INJUrZjwbTCVGWW8zJqzYi586FRqNBXFwcxowZg1atWsHe3gEEQcDe3gGtWrXCmDFjEBcXh4yMFGg0sxAXZ2uSyiAGduoDbQjzpW7QBr5MRlXr2LSp4gOp/PwoLYbQUKODiNmmnx/wzTemkQlclYjpdpiOKva5ZGSIi7SxBO3EEetUEJMaw+dElNI7JKoLXbt2zdq7d29MixYt/s3Oznb+559/XrW1tS0eOXLksX///Xd9YGDgU7FtOTs759nb23N+LLm5ufGWrASAH3744WBRUZFNixYtJjBD51Uq1cRr1655Hzx4cDe7hKOrqyvnbLmLi0uJk5MTpyPF1dVV6+TkVGjpXGQyGQ4cOLD/4cOHro0aNZro4uIS4e7uPi0oKGjktWvXam/btm23pTb4GDp06P1hw4adfvvtt0fSAoWenp4fv/HGG0MePnzovGPHjgPs/i9fvjw4NjZ2d9OmTU2i3Ldv3/6nvb29duXKlYa3HHuso6OjLzg7Oxe2adNmorOzs0lqglKpnOzu7p6/aNEiw8dLRZcEVSgU5MmTJ2MLCwttg4KC3nd3dzeIMr722mtj//3331p//PHH90xRSqE+uLu7C6Z5NGrUKP/777/ftXHjxg61atWayjxfLy+vaRs3buywYcOG3S1btuRJXjXF2dm50NXV1ZA6NHTo0PszZsz4Zdq0ae8yz8XFxSWiUaNGE9PS0twPHjy4l0/zwtnZucjFxUWUHS703JTlPgKAH3744VBxcbGcftZcXV1n1K1bd8KCBQu6hoaGXg4KCrrq5uYm1k8AgrTmi4W9M0HoAXxMkuQ3jGW+oKIn3iVJ8ghj+SQAq0iSlBwTVkAQhCuAZ8+ePYOrq6vF7SuTgoICODg4VGkfqpzUVMqaYKsB3r1r+FJOT89HUNBBJCfnQKVyQWxsMMLC1IbfExL6wsfHzMlcNf0+fZoSAhCr4iYSkiTx9OlTFBQUwMfHB4TQVGZ1gGt8ZDIgJcXiuGi1OmRmFplc0/T0fHh42EGhYLzu1GrKGgWghRyhGIck+EKNZVDiCTQyTwT7rUDDJjVw82Y27tzJMaRw0NhAh7a4g/uoAb13HaQ9ML7rHRzkmDUzC4u+noMinQ6UnsAaACMAECCgA0CChI3BWOMqnyl0e9Oik+eTlVgO89LbajVlNIppz12vMehF0DjXq4cinQ7FqalwUanQOHo39k9cCZf041Cq7BAQdwpNXjdP4eBiOrohQHXPROzTRaVC34QEnL3uQ18Kwf5zrRezH23I//YbFbpPCz+ynQTMsU1NpaI8mOsJgooUsPbRTE2logJmzODfRi6n+mXpE0Ctpgxx9nUEgHnzgJ49KWcO/RoBzAU9xfZZSFBSaH1BQQEyMx0Mx7XUh9RUSt92+XJucUxaoDMmxlzAUExwmNj7hNkfrvFlwvozg5gYiBJ8leDmZfmeyc7OhpubGwC4scvalxeCIOoEBAREbd68+ZG/v78oo0vCejQajX3r1q0nZGVlrazqvuj1evAZwBISlUmvXr2al/fOewhArDCKO4BH5TyehETVIiKm1yBiqHJBcnIOgoIOGRwSanXv5++QAPj73b69lLQMcI+PXk9ZLgJYFRXDmHpVQId4bEQClkCJJ4BcDuXGRUg4MwD79r2BRo3cDA6JBg2cEVAPAEiUQI5ENMA9eCDtQRHs7eXw8aFSQAsKdNiy1Re/HjuLdm3agNIgDgMQCgIPMALjcH7/31CrKV8Ul26AJdkQOrqhFm6WOjmMWBN5kXQ20+CQcFGp0CchAS4qFXJTUlCUmQknpRJZ48+h3aB2+Dp9B+YgBedcpmL9Dk9RDgmZjEQDZbFJaohW2QluX59Cls6HUx9BzCy40Ow5PWsdHW2Mhvj6a9PZcqEUGlpDgW6fIIDFi613SNDRGJYcEhs2mEc28KVf+PlRfWGzaBFVcaVDB+Nr5OhR6wOphCJI6LKq7PVCmVaWgrlofduUFMp5QxDcESJlzVazNsqC67kbNYr/OaTLpbLLnEoRExIS1Y/Dhw/X6tq1a2++9QUFBTIbG5tqUU1EckhIVCXlvftug6pLJoYWpdtLSLy4iPzaVCqdERsbbLIsNjYYSqWgaHDlwdVvgPtL/L8IX2L6ihWCY5KZWYSkpCwkJ+cgOPgwTp58gODgw0hOzkFSUhYyMxlRayzLQyEHfJZ+YmLxeHjYIeeGBvsm26F7p5pQqVzwzTedkSlzAUBALgNea1HD0NXCQh3S0wuhVDpBqXRGq1YeaN+pNU6dPYtPIyIgAwFgH5zhCzd8jxsRQ3HlXKbBiFQqKeOMiZAhlqvRQB0WhhpIwwiMgwzUd5RcTnKG6vM9Lk1fc0FNf3+DgKV3YKBBY8KnWze03XMSk+cYhTlJyLHm8iQsX2EeaEcQppeOmjUmMGjnEsOyBIzBlNQEvPNebSiVwKxZ5tcyMtKyIc3ntDl6lBrL7t0pA1qM44Ten/nqCA+njH86qsKSFgGbxERTbQI2gwZRRvjOnVRpVPa1Fkq/aNvWvD2dTjhNQUx6gZCgZEwMNa7R0eYGOD3e9eoBW7aIHyMmfn6Ap6ewn7ks2Wpl0QRmX4stW/ifw1OnzB1cej3lbOSiOqZ5VMc+SUhUBiqVKu/SpUuv/P777x5cYpfff/99o7p162ZUQdckJKoV5U3fCAewCcBHADaRJKljpG+8Q5Lk/0q3GwhgD4AJJEl+V/5u/3eQ0jeqIZZielNToUm4iuDZGUjWGMUu6UiJKnNMMPtNK7CxsRS/LpIXLn0DoKzJaI4y2RbGRKPJNTgiaASvdWoqZ2y5VqtDaPsYJF18BDWWwZvIxT9zv8HQXc5QqVxx+zaV0sFFQkIfqFSuhpSR/PR0HAwKwpXkZGyxtUVaMZVe+ToccQ73QaV2GFm6FPhoeDrsPDwMQo9s6Dbp6IbG0buxZUIsCjMeoKXyPsac2YssnY9ZiD3f46LTalGUmQlHHx+TY9x74oiffnYTnOlnEhFBCRnSBln9+sCj2w+RPHsAFJpTeAJfzEGKQfSTD4IAvln6FCMGPYOjjw/vOACmlxAwT7sQA8+rgzfdBRBOb4iJoWbPhfrBTCHhC/nnuT0NERHsDCe+18jt2+LSC/hSHeLigKFDxTl4ZLICpKQ4lCkDTURGXpnhG0u+bYWuL5O4OEq8lGt5aKjpMq40j5AQ8ceqDJYupZxZQvdhZfOyfM9I6RsvBtOnT39ty5YtXYuKihQymczwtiEIgvT29n783XffHerSpctzqwgiIVHd6NWrV/PyOiUIAN8DGAUqVvgegAJQpUKvAsgHUBdALQDbALxPlueA/0Ekp0Q1he9rMyYG6WMjEERGUCKGXkDsgT7PT1NCTGL2rVtUEjjbwqioL3FUkFPCmq/0iqAc1snJkw8QFHTI8HtCQh8EBnpbdfj0C7cQFLDHIH4Zi80Iw/vU7yoXLF/eEf36/cK5L9sJQlfKyEpKQs///Q9R69djxYoV9NYAYgEEGvaXyUis8gtCo9ae6Bkfz2mQM9vMGn/OEMlAQIcprb5Fsw8/Iu2fygABAABJREFUxISPbDiNULHGGWVYF4Akzd8zXBoIbNkPygCjBDgJ6PCB5zyEfDoCgyaLq0YtQwkW2zeFf88meGPfPkHHBA2fgShmP6YBKaQDERFh1D/gMuLEaBJwIfaRZxq2zH0XLaKiTtg6GGfPin+98D12O3daM64FUKsdyuxPLat2REVhrT6EWP0RrrGlI4uqSosiOpry/zKpwD89onlZvmckp4SEhMTLQLk1JUiK9wG0BfAFgN9BOSO2AkgEcAbAEgDtSZIcLTkkJF4a+GT2x42DB5kDf6RBhUdQZ85DYL0Sg8aEv39NeHjYVU6fxEj7M+scWhtf/Dyp7EoYXJQl5hpUpERYmKnoY1iY2qAxIRaf7HtQYxlVhQNeCMIsyiFRxxbbt3fH9Ommsdk2NgT27u1p0C4JDj5sKEMrVyjQMz4efRMS4PXqq1i+fDmOHv0VtbzqAEgG0AXAHABPAeig1xO4o7FFVlISijIzOftHtxkQd4oztWL8hza8YfxiQuDpMH7TvxLULzKUYNXCzFLNBXqZDuu/LTGIRMbF0Xn2dEUQOb7PioKyg79hHxqCIM00MQBADxukF/ri8d9/m4xDfno6dFqtybZ0+DnPcAkilwMdOxp/F9KBkMmMDgmAO9NKTPUGLsSUuGSnV9B9On2aimRgQxDAnTviy2nyPXadOnFnnDGrazCXlbf0aFVVOhZKX+GDrT8ik1G/s58vrvuCJKuu1ChfaVmxpVYlJCQkJF5eKkTRhCTJv0mSXEmS5FSSJN9n/EwmSXIFSZLnK+I4EhLVmtIvQBMRQ/1j4NYtKJXOSEjoi/j4nqYVGSqKsnzZVuWXuBBlOZeKwsoxSU/PN6RuUFEwfTidBKJo1AhK2TPEYrPJ4uXDbDFi6K9ITs5BgwYuCAysbRDBnDXrLHbv7snp8JIrFIbUCK1Wh2++0cHR6Uv4+78HQA9gEYDWAL4DgSI0UBajt1ptkk7BRq5QIDXbvPqFTk8Iijjywcwr5zasCYyouQALUR81N7yOZ7dugs7J1QMoyc01GPRDhnAISeoJPE5+iI0bCchpZwahw4Z1OqgPZQAsx4QMJfC2SwUhl0NfmvKSq9HgYFAQjoWGGhwTTJ/ZxInmRjJBUE6Sc+eof8ePN24jk5mLFvLpQMjlwPTplg18vhKnkyYZjX2uYCUx4p58GrB371LruLQNCEJYeoft5OF67NjOCpmMihhJSTHXvli7tmJKj1ZFpWMR2smchIdTY6FWU/9yvar4pISsPVZFIVRatjxOJQkJCQmJFx9JZlVCoqI4b/S9KaCDD7JNvsR9fBzL55AQUgbj+7I9fVpYTayqvsSFKOtXekVhxZh4eNjB37+mIX0iMNDbGBXzigM8Lp+x7EyhrysATdQGhOF9k9XTolPwiuY8VF7AH3/0xu+/v4tTp/oZHBGtWtW06PCiBTnv3tUhP783QkK+A+ACIAXAJPijG/pvi4KzUmnxnLk0QYUqN3BFGQDmwTAXLnAbsvOPjIFSZQdNchFmLFIBBm0IOSbNchcUdpShBOenjYNj+kl8WqsPpqMbVtXtgv7tkxAU4oFlkckGsU4ZSjAc4+HtUYC80tKnD06eNFQJoaNI2E4E2iin+y6XU0ZzaChw6RIVTbBhA7/Ww6pV3P1fsYIy0KdMsaytm8sTlDNwINUGXWGCTf/+lm9zPsN26FDqlcfVt44daYcCddIEdJgYTpWD53LyANyPHdNZkZJCaRH4+Zk7MUaPFj4HJtVNYNHaSh1MxFQZYTt2+J7T5wHfvbRoUfX6EyQhISEh8fyRnBISEhVBaiollc+mor62LKUzcH3tyWTU9PGLVvKTcS5ayJEOV5Mv5/T0fNNSm88BrVZnFvVA/x4f3xMJCX0Neg5KpTMSPspD/LHBUIT0EB57xnVNV7ZAcLSeStmoLUMClkKFR7gDL9yCF/Y9/hpK2VMoFHK0a+dl4oiw5PBil6k9elQH4BPYoCmAElzGGfQMCcGVkyctjsXRo6a/EwQwYgRAp1oAgIygqnG467kNUK5gmMhI6nFhhqRPmwY4+foiODYWv2EKwBKr1OuFHRKBjvvxWfp+DPskEJ8/+AFZiqYYsC0Kvw4ciJ/feQe1d/TAQtTHdHTDQtRHEL4HAcBJqTQpJ+qiUqHNzhM4e90Hp05xh8Tv3m00kkNCKEcAl8OEGfiTmgosW2bed7mcqpRBl7dkpzcsWkT57mjDms9RRGt4MEP2mezfb9k4p4/Pfr3o9cCcOVS1EK6Mp/Bw4NrZDLzjuhEkgNUb3VBPSWJoy5+hSS4ycfKI9ZsytxWbEsRsuyqywiwhJmusPI4UtmNHqMJKZcPlJFm61Fxjgqa6OZAkJCQkJCoPySkhIVER8MWlBgSUv20x6QxcX7a0zD7fPpaOWZFfg9a0V3ouWpkCoRiHIMyCZuF6wM8PGk0ugoIOIjT02HNzTGi1OoSGHkNQ0EGDTgSzHwBMhUtTU+EzazwUJBX+zzv2rOvqQebA/9E/UCkdoV6pRCBu4ShWQolMtEAampFpwK1bBqeMtZE35mVq3TDXxwPRs2fDniBwvbAQ7Tp3xvoVK8An/8Ol+0AQQGwsQJJGq5gkdXitZqJZlAENl2Gv01FSJ9evU2H6ACWKV68eiRl9TuAYppv1hytNQCYjMbnWJMxGRyTkDzRU3SAhR6x2Dfa+NxM5ycm4/8cfyLt3DzWQhtZ1bsK3DnVS+ffvQ19UZNJm+uCf0ayTL7p3B957j3NoUL8+ZSQfPWpMJ+FzmNCBP1zpDwDljGGmd6hUxqCnqCgqL59pWHM5ijZsoP4/cyZ/n/V6IOlsJmckC5PwcGDXLu7zCAjgz3hyqF0b/8sdC9qZpCcJ/PRsHCKRgqzx57DriI9oJ4G1DgX29kuX0pojxnMfN656GLxCWWPs8+AqEGQJpgOnqrP22E4S+llnUx0dSBISEhISlUe5nBIEQcQSBHHCip/Yiuq4hES1ojwxuJYQm87A/NrbuZMjwV5kCkRFfw2Wpb3wcGSeu4KkOu2QDC8Eb3DCyZMPDPoNSUlZyMwsstxOBUCnPtA6ERb7Yel60Q4almVOaZFsQMJybyiDmkFL2GIGQkEAWIZ4KOSAxsG3zE4ZLkHObbbjEPrRfJw7cQKv2tmhgCTx4fTp6N+/PzIyzMum8+kLsG81EjZYP2CJIcqAqVURE8MtkMh8XEyFHQnsyprFWdLz47HPsHbJU1N9gSXP8OXJqSBqvWK2jx42SLnvAOcGDeDTtStsHB3hpFSi/+nT6Hf6NJyVSsgdHKDNNorYP4EvIhapTIxZLvLyhPUh2Ofq5AQ8esQt2jhlCvV/5qPToQNVljMy0tw/yS4FKpMBWVlUhYboaP7+yOUkbk3vwxnJwvYhcglPMqMxuKIWqPuFq/KOHJPneIiWjrFWZoYvEodL/+L0afP9qwIB7WST85g5k3KwVPSxnieWjl+VskISEhISElVDeSMlkgHcFvhJAeAHIAhAFoA75TyehET1pIyVG0RhrcODJIEGDcrmJKnor8H798vcnk/bhlCfDjWkHAQFHTIISqrVvSuvrCoLDw87g5gksx8NGjhz90PoejGtzKFDzSxSBaGHj9IN8PND5tJvkQRfpMADIZiKkxHrETzsfJmcMmxBzuPqt9CgniPuaAoQHHwYnq+0wflbt7Dw669ha2uLgwcPwt/fHwcPHhR1alx6BZuwGwkYg+DYWINWBXeFDdPH5fZtjvQIyEEQpjvJoEPA7Slw/7YtrpxMg1oNXDmZBvdv2yJh4kTUJm6ZVdiQoQS1cAudVqzAW0eOIPTqVfQ/cwbOSiWclUq8efAg7Dw9oSsogItKhT4JCcjx6crpEGH3v2FD8VUw+vennAx0yUt6/ORy6jVCpyqwH53Zs7n9XVz+x9mz+XUsAEAuIzGmxhwoNKdMIln4fIjsNA62YCcX1P3C3Qmu1Bs+GRxrZWb4nGdiEArqet7pBHz3U2Tky2mg8/hrAUgVOiQkJCRedspbEvRzVrUN9s9IkiRVAKIBvAJK7l1C4uWksuJixTo82NOqI0da7ySpaJHJO3fKHrEBKuUgJqarybLY2GDY2sqEIwUqyHrQJmsQGrwbQwcdxZIl7U3W+fo6w9ubo849V+L0tGlAerq5QqJZiAFJXbuYGPjM+ADqM4OhqmNLlQhdrDd1yuiyRFtPHh528H/FASofW6h3BqBLt7r440Q/k6odLn5+mDN3LhITE9GiRQs8evQI/fr1w5gxY5BdGjnAdysy89SNyLEDG7B32CzkajQA+I2sXbuMj8srr3A5PkgsXkwwjkti9eKnsLnzJ3KSk/HXsC5oYnsSfw3rgpzkZDy5dg1O2VcxAuMMQpYEdOiPSNRAGk5Nm4aCBw/wTF4PZ6/7GIawRrNm8GzVCk5KJXqr1SipF4hX5600d27ITIUt6UdLTLUDANi3z1woMy7O9LXBV86RDV+JTD6HBAEdxiIUX+vrIuDxYpNIFmt8kiQJPHkifJ4FDx/iLZdNnOVXCZSYOSz4ZHCs9cvyVSMx6wPBXZqVK6irMtIJLL2m+O4nvf7lM9At+GufqyCnhISEhMTz53lpSkQCqAFg6nM6noRE1VBZcbGWHB5c1sT27cZpR1p9z5Khzvf1n5FhVOazxthv0KBcX5e3bj3DO+/8bLJs2LDf0aHDAf4UhoqyHmJikNmwFZJO3UWyJh9DBx8zWX3mzEP8808W97709WKKI3ToIG66lmEJKts3QmzcWyarY2ODofx1j1XWk2LbFsQfG4yE9KlQdmoCxMTwlqlt1aoVEhMTMWvWLBAEgc2bN6Nly5Y4fvy4yakxb8XwcGDzN+YWqh42uKOxxeHgYOSnp8PZmb9aAw2344PAzJnU7bx8OXD6NIGJszzQW62Gi0plIkrppFRCRhDQFRTgTd+jGOyyEIAOJOTYj8U4VyMCuXfuYHrbb1GvHsk5hARBYOtuJ9SrB4ya5AUSBAjoDf3ZuNFYjpH5OIqpdsDlMCBJIDPTXLxSjINj+nRz8cLFi7mjVwBgwnvpCMBe1EAaAJhEsnBVAtHpgK+/Nn/FkKRwKkFMDNDk9Vr46dk4kAB6dCkwRlmgBFNarcP6b3WiZHCsDUTjq0bChCCoceMrzcoWJK3odAIxryk/P+pasnnZDHS+ijZVJcgpISEhIfH8IfgEzSr8QASxDsDrJEm2fS4HfEkgCMIVwLNnz57B1dW1SvtSUFAABweOmWGJqketpr5uuZZ360Z98dJffTIZ9YXPF8kRE0N9cet0RguKJI1WDklabIMkSTx9+hQFBQXwOXIExIQJVHv016WIKJL09Hx07PgDUlIoC6NOHQcABO7fp6peKJVOOHOmv5nIJOrVM7Ws5HLKchT7RZuaSsUPDx0KkCQSoUQnRKKEEcJvY0OgpISESumIhGW14dOhqXn7XH2xBrUaGlWAIe2CRqV0hPreVChJo3Ck4RwB82PSlmAZxuTPP/9EWFgY7t69C4IgMH3sWHw1YAAe12yJm7k+aNSIakKn1eLmXxlo1rEOSIavWy4jsdIvCI1ae0Lz9j5M+MjGrBvs24F+z6SmUrPBtGYB3y384ORJHAoKMuz/rlqNyytWICspCa22HIN/l3pmffrMuz8+u7/fdLkcuHb2Ic4P7gRNchHmIMUkbYNACWLXZ6PbOzUt3kqJiUBCAhAURJUFpR8nuRzo0wc4cIB/X5mMcjRMmQL060eVSuWDIACNxpjuwRyvpUuBWbPYbZNY5ReEPE0KMtAIdsiFzOdVjDywBE6+vlAq+SMsxo2jxpyrvykp5loIXLfh2rWApyfQWvUQqhY1IFcoDP3OyDCmszChX2F0u8xzpGH/bYqO5q/oQBMXR5VtZR6H7xVKksKvV2ux9jW1dKlRS8SKV+gLA9/Yx8UBXl7m17sieFm+Z7Kzs+Hm5gYAbiRJZlva3hoIgqgTEBAQtXnz5kf+/v4iXH0SEhISZaNXr17Nn2f1jVRQKRwSEhIVjVB8s7XTfPRUeFyc6dRlWat5CEV5CEReeHjYoVUrDyiVzlAqnXD/foHBIeHoaIPffnvXXM+hvOkn9PTlkCGGc22FNLRHsslmu3f3hMoL8NechkfoW9Q+M2daToQHTOP+R43ing6XyZBeoDDRgUhI6EPpWmjyEUxOQwpqUOVSGeeYfuYatGxhQb7kfRFj0rlzZ1y6dAnh4eEgSRLLNm5Ew17vQfn6fcMM76YNJTgWGoq/h3fFqoWPIJdT4yZDCT5usRajTuxEkxXxZg4JmYyKfOAyrmi/EK21yXcL3zibBnVYmMm+x8PD0WHZMvRNSMDDkgYmjgcA0OkJKMZtNV+uA9JyaqO3Ws2pI0HCBn6NLTskYmKooJjp06l/AePt37+/sEOCPrfoaEqkUsghAQAzZhiNNXaQ1nvvUWNkvN1IhNecA7WmIyKRguVQIwrn8HX6DjTt4I3or3MFNSg2buSOvuBKJeDTdPjoI8rXd+JibcgVCpN+Cwlp0ogtAzp7Nv96ul1mdA4g/Aotj44x1yvO2tfUzJnGyJzTp6lqLC+TpgTf+HbsWLWCnBISEhISz4/n6ZR4BsDlOR5PQuK/g1B8c1kMdT8/akpTyEqhVenE9o/9dWkhflmhkCM+vifOnOmHnTt7mKz76adeaNjQzfw4fDHviYmW+8hTOuEBXHEf7ibLZk0/id2PohCPDVBAZ2pJWkqEP3PG6KDZssVYF48pyqDXw+OdbvB3NWpIBAZ6Q63uDZWvAs2Qjkl4jyqXihqAXE5V5pjxEKEYDy3ToGYKIDD7ITL+28XFBd99/jkOEgQ8IUManoBERwBR0Ot1+HCiHDcvPkZOcjI8v+uEc/HnMd9nGBaiPl7PWQm5QoHkFAWnkZqXZ368LVuoYRwyhPpRKvnTCrb3n2mo8NEnIQFaZSecT1ZiW49RvJdAJgOat3XjHRJnpRIDvplqpoNQHp1YgKq2sXev8P5MLAUxyuXGKh1s6EdrwwaqnYgI4Pa/xdDXaoz9WAoY7g/Ky0BCjrUbnXhTPoT6xBwX2gDPy+NPH+HzZ1pK0WAb93z+TDG+QK5UAKHjl1XHmO8VVxYnBy0C26HDy1cmszJ1oiUkJCQkXgyep1PCFYAFWSwJCYkyEx7OTLo3TkGXdZpPTFL70KFl+zIWGb2hUMhRXKw3K2UZHn4cGg1HNClfEvacOZanFjmsmXS4IhgzcAdeUHnBJFphKD5AJpxM2yBJy4nw7dqZOmjoWPvTp00sOQVZjPhLHyMhrh2USkq5T/nrHiTcn4a12ImrqEOVS8UMY2UOTT6SvFohU+ZqPObGjeX/4r95E31IEhvRAUA/AMUA5gLoAp0uGa8s2W/Qdjg/4HXUTd8FpcrOIKAo9hZMTaVm05nGL0lStzSX+GVjf3uDUONP1wMxJTUBy6HGZM2f2HHIy+wSANQl7tuXWwcWAI7sfohTU6eaiGTKUIJVCzPLpRP755/8+4nRjjA9d/5LyJWfv2IFkJGpwObro0E7Itjo9ARmzOASLOWHIIzjNnMm5UDq3h3o3bts/ky+oCq2cT96tOnvW7YY2xDjC+RLfRAK6rJWx1joFVcWI7y6lcms6EoklaUTLSEhISHxYvA8nRKNQZUJlZCQqAzYcePsWn7WGqVcqn1syvplzGe9xcebtMUuZZmwvwNUPrZITs5BcPBhpKfnm7fdlkO2hq/WIBMOa8ZDVgj/gDqUjsP5YcZoBaUj/HEfHuCY6mdEoWhHjkb62esmX9rp6fncAp25uWaWnEKvhU8OY2p43Dj4kE9RD0+gxjKo8Mi8Msf5YfBJuWQqcKpSmYieakeONhs7ul9arc58nWtdaAlbtEMKCMQD2AIq8O0UgFa49E8sum3darIPU0BR7C1486b5sADUrTJ9urn45Xs/rkffhAQ8lSlLDTZ65l+GDyfaIDXV6Ktjztxz6cACQL16JN55rzYma07A3tMLifv/NkR91NzwOvLT0zn7RxtofEKeDRsCnTtznxsAdO3Kv47J229bNtr4Hq2EBOP4cEFHXtCG4dy5/NEONDIZVYGjXj0qUEhsdRCAioLhE3dk+uy4jPGtW01/nzTJ+FiL9QXyIZQiYo2OsaUANWuN8IoujFQeKqMSCVB5OtESEhISEtWf5+KUIAiiC4D3AOx7HseTkPjPYWkarazTUMz9UlKAPXvMtynLlzFfFMb06SZfuR4edvD3r0kZ2+PzEDjoNajTZ0CFR/B3zYGHh524tgmCiuqwJHXPsmYUG79F/J4eSFhWG0rZUwBUmdKEMwMQPyKfSt1gU2qFarU6hIYeQ9DgRGhUAYCfHzSaXAQFHeSuHGIpnIBllSjxBLHYbLJ5bGwwFVVBf90fPQrUqwdt9zeQ8vpbSL9wC9paPggNPYaOHX/AqVMPoNXqcOvWM3To8APeeednDBz4K4KCDiIx8RFSUnJw69YzBA1ORGirtahFZGATxkOO4QAuA+gKIA+RUbPw9ptv4hmjL+qwMEMpUEDcLdiokfkyehiYBjOdV5+eoYCjj49Fg43D3wOdjkozoIUKTZ0acnz/JAq12rXD7DOLoFTZoaa/P+w8PMz6JrYSb7t2lIQIF2o19/KICODcOSrS4dw54KefLBttfLdRUBB/RAY7VaFbN6rixtmzwlEcOh2l3yCk5arXgzMCgxlUxEdqKiVtY0krlq1rUR1m3cVEB1ljhJdH16IiqW4RGxISEhISLwflqr5BEMSXAOoLbOIMQAmgDYDjAN4gSbKkzAf8DyJV36hGpKZShiFdcqA6Yan6RkUhUjbepPqGjw8IrqlSZpUPNow2tVodMi/fgc/rjQ3HTYcrPGSFUKTc5r4WfBVEBPpsco60xP/Ro9wlH/gqazC2SU/PR1DQQUMEQ2xsMMLC1Azhyr7mQp2jR1PTwDSjRhlj01nH1KAGgjEDyfAybN6ggTP27HkD7dp5GbZP0bvhIwzDH2gMT+Ri74+9MeijS9BockEQQPv2tXDpUiby83WQywl4ezsgLS0fNjYEbGwIEASBggId1ee19eDzbmek6n1wCw2hwk3sJNLxKUmiGICzTIYVX3wBp82bDVoPfRMS4OjjYz7O4H6k1q0rwMSJDobLxS70wlWFIyRE+La0dNtaenzy09Nh5+FhEGdk9p+r3dOnKYcHV9WAdeuoFBVLWFs0hgnz9mdWa2A/FnPmAD17Clc3EHpMZTLLDgP6PE6dslxdg31cDokXTmSyAqSkOPCeg9CruyyvdbH78F2HslLR7ZWF5/WnprJ5Wb5npOobEhISLwMVUX1DCaCuwI8cwEkAg0iSDJYcEhIvLJUVr1pRPK9ptIpUJKOnM5cvN1/HmOZWKOTwyb5nYp34IBsKvZY/QoM5VbprF/c0Od++9PQlYD4lOG6c0SLhspa++cZgJfj4OFKpHioXJCfnICjokDHFQt3b3CGRmgps22a6bNs2SqSTPubixYBcbtC6SIaXoTJH/frOuHMnF506/YDExEfAzZtI1PuhC2ZCjSbIhx008EC/UWdRWEi9ikkSOHMmA/n5utJhIVFSoodcTpU8LSzUo6BAh3r1nKk+v9UJ2LgRfvIH6IbjUMofYua6dVjTrRvqKRTI1esx9pNPcKhVK8jq1eONLgDMH6noaOpy9exJlbmMi6N+UlKMhhfXLO24cUB6OjvTiDS5LWvK07H+2xLe29bS4+Po44P0DIXoKgp0BAbXY9G7t2UNCZkMWLSIar8sM9B8kQLswKevvjLvJ1srgFmMx7SaB9VHoXNhjjNfdQ0nJ+p4iYnG4/JozhoYNMj0FbR2rbBThe/VXZbXujX7VHTExosSASIhISEhIWEt5YqUkKh8pEiJaoC1ReWriuc5jcaMJuAYA1GREsy2LI1vea6B0L4A/5Qn35RgRASVS2AhUoJ2JJx86oGgAWcMmyQk9EFgoLf5dCvf8eixI0mDtaptHYDQpc+QdLsAanVveHs7oGfPn/Dnnw8AAA0auGBpZEMMHX8eJZCjLjKhB4E01OQdptq1HfDwYQHnOrX6XXTrVse4gHX9dVotctLTEb1pE6KioqDX6+FXpw5iYmLwZq9eZu3xBZpQp1uATZscOG9dviGSyai0idhYEiRJANBh7eKnmDjLA7kaDQ4HB6Omvz+arIjHHY2C87YVeny4ojP4AmYs3ZYxMcDYscJCkJMmAd9+a368yobvPNnLp0+nHgE/P/NxmzYNGDyYO1KEve2IEZTfjV0qdvp0yknFh1pNtU3fgh4epn+b6EfL2ZlKqeF79K29ds/jT0F1DsijqQ4RG+XlZfmekSIlJCQkXgZ69erVXHJKVHMkp0Q14EWKV01NpWLHSZKamqyir1qrnBKAuK9ca7+EmV/3R4+a7wtwW2DM/ZVKc+uRtkKYqR3s9YsWAbNnQ6N3M0uxoPUxlHPGW85B4KL0+NpaPsjMLIKPj6NJqoiNDRXlQGMDHU5hEbQyOwTpI3ibrVPHEffvcwiHAnB0tME//wzkLsPK4vTp0wgLC8Ot0kiUKVOmICoqyuTdwfdIURRALncwGHrM1AkhZwYbGUqQuP9v3IgYKiqVBDD6WpycKB0KWuNCyBC15ra0pv9MnocPVCgVhc+wp/uTmEgJaQYFUdoZlo5DjzG7XRp6Jp5rHddYMP82sR0oXG2o1dRjbe1rvbL/FPA5haojFvzS1Z6X5XtGckpISEi8DFRE+oZVEAThaHkrCYlqxosUr3r0KCXoOGRI9Uwz4YOvnCl7G6HYZWbcOTvGGjDdNyTEslqbnx+l0MeGTv0ID6dSQ7jWz56NdL2zMcUCj6jKIaWpHMGzHyJd72x6bICyQiw5cEqPr1DIDSkgzFQRpkMCAHZvCEDt3d9hmM98s6ZsbAjs3fsGlEpnTocEfdvn55egR48fuaudsOjYsSP+/vtvTJgwAQCwatUqvPZaG/z8c4Jhm0aNAILIB7iEQo2niFyNBgeDgnAsNBQ6rdaQPSSmhKYeNtgxYKbBIUGXJzU7llaLmxceGsQmb98G2rcn0b075ZNatariqijwZf1YwpKWLPPWL2upRuGqHfz94Sv6wwedHZWbyz8WdLUVLr1aoWwxrvQeLpycqCgK9qPGfq2zx7Iy/xS8aAKSUqUMCQkJCYmK5Lk5JQiCGAlAY3FDCYnqRkXqKFQmL9pXLROxlg3flzDTCaFUUvHx7HEAjPvyWWDssqFTpghbIVyJ8qXTsx7Igz/SoMIjqLEMgTWyKMeBjy38kWZaTpRp5VlySvBYQUqlM5YsaW+2fMbCm+g04yE0aYUAAB8fe9jZUX0uKSExZUoCd4lSGGdsvb0d0Lq1p6HaCW9Z01KcnZ2xbt06HDlyBN7e3rhx4zreeqsbZsyYj5KSEuj1ufD0PAjgGLgcEzKUwPVJIg4HByMnORlZSUkoyswEQBn9Z86I0GVACWqBGlNmeVImOq0WEa9vQOMAT4P/6oMP6BQQajY9Olr4FqADcrhmjHVarUkZUcoZY310opDhy771lcqySd9YU7WD7k95Xjl8BXgA6hEYPNg8SEkmA1q25He6iHX6xMVRrxm29i3ztc6lHVGZfwqqU8lPCQkJCQmJ583zjJRoBiDnOR5PQqLiqA4KY5Z4Ub9q+dQL4+LEWTfs/dmVNgDzcTh/3rwdmYyKMLHGCuFaX6r+p4AO8diIBCyBUp4NNGxIlRM93BnxxHem5URpxT9L5QYEpooTEx9h6NDfTJbZQIeUlFw8eVIEe3sZlEonnDjRF0FB3pDJAHt7GVq18kTTpu4AqN+3b+9m0oabmwIKhRzLlnWAQiEXLmvK4q233sKxY+fg5NQegA7Ll3+Nlg2bI7DDOjx6lIO6vo+wd28RliwxDiGBEgzHeJwf8LohyqHNzhM4e93HEAmQm2vQ/DQM36hRDKHL0jZqIA2AeXlSmuTLT7Dqn49AgtqRGnpzp9C4ccxjkVj3TYkhdYPpEFi61LiPTqvFsdBQHAwKMhw7Ly1NWEyiFJnMVFCSz/AVuvWt9Uny3eqXLpl2WSYz9qc8rxyhqBeCAO7c4X6M27fnd7oIOTqY/V++3FzHghmgJeRsqaw/BS9SQJ6EhISEhERFI8opQRCEO0EQqjL+NCUIIhTABwB+qdzTMevzEoIgLhMEkU4QxIPSn6sEQawjCKK2iDbaEgRxiCCIZMb+aQRBnCMI4gOCIOSs7e0IglhAEMQtxvYPCIK4TxDEGYIg3q28M5aodKp7vOqL+lXLZdno9eJTUMRMj7KntiMjzbfhsugSEwGVyhhBwWWFsK2UmTMN1p0COvjI80ysSp+2DaHYtI5ZKgKIihKOZ6eRyajUExbp6fkYMuRXlJSQsIEOe7EOKjxCCeSwgQ6O9jJ4etpj79434eRki5s3s6HXU+b31G463L39FADg4eGAuXMTTdrOySmGRpOLkJAjOHnyAYKDDyM5OQdJSVnIzCyymC/QvHldXLnyK2q5hANwxLWUf5GaPg+u8v8hQrYUIe0eY+ZM4MrJNMz3GYZv2gxHEL43ntvgn9Gsk69ZJMDs2dSw0cO+ZQtw7exDzPcZhoWoj7dUf6BPQgJcVCrkJCfjcHCwSdQCAKRm1zY4JITo2OIR7t4Fjux+iJW+QVAeGYiUZC3GjSNNHAKzZgELP3kGnVaLosxMZCUlGY794ORJbOs/C6SFP7syGeVwSUmxbPhauvWt9Umyb2U6y4ntHKBvwfK+cvgyoPR6yjHB5WAQcrpwOVaYziq5nArG4nrd5DECl06dEna2VMafghclIE9CQkJCQqIyEBspcQPAzTL+JAHYA+AcgLkV2HdeSp0FvwHIA9ANQB2SJL1JkvQG0BHAdQAnhTQuCIJoCyAewHoATRn71wUwEsC7ABazdosE0AjA6/T2pfv4AhgLIJogiNYVd6YSEgwq4qu2rAnp5UFoelPMdC/X/gTBPw58lhzXtGyHDpQF3KEDJTbAN5ZsK8XSdGp4uLGeol5POUl++w0W4bEyPTzs0KKFBxp42+AUFmEgLkKNZVDhEQJxE87yEqSm5mPo0GNITs4GQJ1rQaEeb866jzuaAtTzoIZKo8kzlBmlNSpsbAjusqZHdomqj1hP/gz7c48D+BRAUwDFyNb9gA33LmFr5854cPIk/hrWBXXTd0H/zxHDfk/gi4hFKt5IgDlzTNMmVC1qIKhdHpQqO/RWq+EdGIjeajVcVCqz8qSpqcCjR1y3nul9QECH7MX9kJGYiJPTpiNPk4KspCQknc2CXm8eVTH/K2fsencC7Dw8DMfOSU7GoaAguKQfB8FKV5HJgLAwYPRo6rbV6ymHy9GjwoYv3X+hbB+ZzHqfJPNW5vMXMo3z8r5y+EqFduzILvNqvi/X48B+9LZsMf3dUkZWTAzw3nvmx2KWL62s1+OLEJAnISEhISFRGYiqvkEQRFMAtcp4jEIAd0iSzCjj/lZDEMQgAO+RJDlQYJvVpf1awbP+RwAbSJI8zLPeCcBVUA6Ih6XLzgIII0nyBs8+4wGoSJKcbcW5SNU3JKyDTxbdUq25CpR+L1f1DS7oGoB8/ecqgRASYl5Kwc+Pu8yAkNw/TUWWQODrg8jKG1x90Gp1yLx8Bz6vNza0kw5XeCAPD+CGYK8oJD8ybl8HT3AfNQy/q4nlWNFzEVVmdGcAlPmp0Dj6IXjYefh4yHEy8alh24TVfgjs4GW5LEMpmt2/IPi9xNIqJHoAf4DAPpAogSOAYQDaASBsbFBUUgIPlQrBsbFYG/otvk7fITgk7MoHtI7Dg8f2SM2ujUaNgJrydOi0Wjj6+ECuUJjc6gRBeTpIyCBDCV7HNpxFGEjIIZORCK85B4WPH2E7NoKEHAR0WLP4KTq3eoBWvZoAHJEW832GYc6FZXD08cGDkydxKCjIsC438l/MWtoIOh11ybmyjQSGEgBY/aeWcbVBEIBGU/ZbVmwJzPJWYhCqYCJUrYPuC7skqKVzWrUKWLHC/Hh81VHokrN0+dLSyrwICKjepTsl+HlZvmek6hsSEhIvA6Krb5AkeY0kyeNl/Dn7PB0SpbQAoLawzbHS7crUBkmSeQAuAGjMWLwDwG2BNu+BirSQkKg8uGKLuVTbmFS1SCZdfYPLeSGTURoQQv3nmmL086OiG+hoByGdiI0bxU3LrlpVMefLNwXNPn+hiA8WCoUcPm0bUrH/pf33QTYU0EGJLMQ+Xsq5H004ORLLRjki4aM8KDs1Abp3h7JTE+xumoD7iTdNtg2b/Dc07d9Cut4ZWqZRzjF1nZ6ej+DZGcYqJIiGCi1A4hMobOohH8B3ADYBcGzbFi716xuiHEYeWGIWWcBERujgbZ8KnVZrsvzTvodMxCs3b1Pgx+7dcSw0tDTtgqnDQADQY3KtSUjc/zcmq75CFOphvs8wXD+XgXHf9jU4JACAhBxT5tTEiXHj8H6jGLAjK2QowYgDS+Ho44NcjQbqsDCT9T5xvXDlZBri4vgdEjxDCUCchAoNSZZPUkZsJER50xmEIgTottu1sy4qgyvoi34NRkdT4xcRYXo8viCqb74xOiQA6t9Zs8omKFpeqiKYTUJCQkJCorJ5riVBnyN+ANItbHMfgLkcuxE3kiQteYZN2iBJcjVJkiUC2/sDqOaqgxIvHWIcDtVBJDM3l9u6GjuWime35DDx8zNGU9CKiNao1TGXHTzI3cfoaOusAT4Lgi8Zn6XeqF23Eelnr5v0MyUlBykppprBhmoYMTGmY1WKBjUQRo42WXYfNaBEJhKwBCo8QjK8EDL7PqWJQUda6J0x9Kc6uAMvOKIIdfAESmQiGV7oTM5AR0QiFOOMjgkOQQEPDzv4t/aCygtQy1YiELehlq1Eg5pe8LcdgLdBQAbgPICPz5+HbNIkQ6WMxu19sfzTNMhAvVYJ6AxOChlKMKbGHPw11FgyFOAWr5w82w2a5CJkJSXh6l85Zrc6CRv0Wv0J2vRvh95qNZQqOwS1y0Mttxwc+Hi1me6ETk/gjsYWb+gWI2LgWZM+LY28g8btfZGfnm6oHuKiUpnoW/w1rAuciUxBzUs+bQZry4o6OQmv57tF6eUhIc8npYDLscHum9j0Bi4fLJczZwUrTpLvsaxZU7h86fPy31ryLUtIvMwEBgb22717d53ytlO3bt1xGRkZthXRJwkJiYrjZXVKyMFVZ86UEgA25TyO6DYIgugA4GMAW8p5TAkJ6xDjcBCjWGdpis6aKTyubfn60L27OIcJ+4t91Srr1eroZUKW3OnTls+Pqz9MC4IxBa2FHOmyGtS078yZwN27SN/7K3KTbiH0SF0EDU6ERhUA+Pnh1q1naNYsHs2axePWrWcAYKyG8e5haMd+aHbO6XBFMGYYIhXUxHI4OhiNbBUeQS1bCZUX4F/PFh6k0eFBlzVVIhOeyDWke9TBEzyGM1LggST4IhNOvFPXCoUc8fE9kfDPCChT/gbUanie+xkRzusQXrAaI7w88RMAHwBPdDqERURg/OjRyCtVHpz6hRJXzzzE3FpDEIV6iEI9TEc3LK/dAcHOe5CbkmJSMpRLvFIPG+T6dEFvtRotOnhw6kgkaSjtY2elEm/s24f2y5bhSEgIXB/+aRatQaAEtWR3UPuDz6E/MB+R6IDp6IaFqA+fuF7I1Whg5+GBmv7+cFGpOPUtmrVx4ZVSYVa4YCOmwgQTpoAjG75blL3ckr5FZcDXN0tRGXy+SEvilXTbXNEYXLoXQu1UBlUdzCYhYQl7e/tIFxeXCL6fFi1aDAOAKVOmtLG1tZ1/5MgRL2vaz8vLs8/OzlaUt595eXmOhYWFJn8k7t69a29nZzdn4MCBweVt/0XEzc1teseOHftXdT8k/tu8rE6JagNBEA4EQSwFcADASJIkky1sb0cQhCv9A8DluXRU4sWgLLG7YhwOQnHaqamUsUyXPeCaorNmCk/I2hBrEbD7n5hIRVQwv9hXrDBPhxBbGqBRI8vbCCHGgggPh/bfZIR22oogv9XQvDEEAKDRuyNo1iMMnHIFly9nITk5B8HBh3Hy5AP06PEj8vNLkJ9fgp49f2JVw3iCTNI8R5p2LKjwCGosQzfyBv4ZdgtKZKI17sGDKIBy8Wwk/DMC8ds6QyEzTt/TZU3PYBH+xFKo8AgaeOA+aiAfdoY2fWS5pjUVWSgUcvj4OBosSrsWLfBK6wZwqVsX7R5p0QvARQB0XZGNW7fitddew9mzZwFQERMT93yIGkhDDaShMY7D4eEF5Go0cFYq0VuthqOPDwDAz/UhZIxzAKgIhk5fzELibSoCYzFbohgE5swhqXKjGg1+HTgQZ6ZNQ41mzaBU2WHN4qeU9kQpJGT4Qf85es4dhuX6Y4jCGWT32QAnZT1DtY2izEz0jI9H34QEQ+SHs1KJvgkJ6Bkfj3oqhcntzoZdZIV+9AEI7seE73ZPTaUq7nLdoomJVW/8lscA5/PBclXz4BofvkwwoTF/HkWOqkMwm4SEEARBICcnJ5rv5/LlyzsBoHbt2vm1atV6XKNGjeKq7jONo6Ojrnbt2o+9vb1NwhDff//9jtOmTXutqvpVkSiVyrF8ESI+Pj6PfHx8nj3vPvGxe/fuOoGBgf2quh8Sz5fyRgqAIAgvAJ8A6AygPgAhNcZkkiTL+bVvPQRBNAbwPwC9SJL8t4xtRALoRJJkHyv2eRPAGgBnAbxGkuQDEbvNAfAZe2FBQQFsbas22qygoKBKj/+fZ8sWYOJEKu6YIKhE59GjLe/n4QGsXQtMmmRUaVuzhlrOvKbDhgFdugDJyVQZTD8/YN064zFp9HrKYujSxei0GDvWpCwCOW4cClq3RmHNmigoKDAKXXJsa9IWVx8AYMECYP58aj92/5njwkSno6T216zhP+/UVEp34pVXTKdehe711q2F1wNAUhK3BXHlCnX8UtLhhEv3S3BXk4OuXfchJqYLwsNP4O7dHOj1WsTGBiMsTI3k5EwEBe0FAPj5OQEgkJKSZVhWv74L/relDdyDc1BglhKgQyw2IBNO8EIOCggCvt8vhhrO8EAedKQeBbNnw71vX+j8/FDAvFcIAujXB+4HDwJ6PTbhe/TANEPLmxADLzxBgR5AVhZlOXGNJwftvtuM4b3i8em9dBzFKtTFUyyGO/7CW8ix/R9u3ryJTp06YebMmZg4ZAh+evttcOXGPXvwALnZ2ZAXFCD33j2cGhSCCY3GY92NiSBhAwIlCMBOvD1uOIACEAQwebJ5Ozod8OeeJGjXDkbO3bvQ6vV46+efIbe1Req9JyBJOzBFLc9gCACjlsV3h5QgiF8x2uMT9Gt6A3pHR2h1OhDu7ibvTsLdHVqdDigowLBhgJ0dJaLIRK83vVW4Hv1r16h/V682PhbvvUeV2BR6zPkeF3oMfv9d1K1bqYh8fAwwx9fPjxoj5vnJZNRjK+Y1CFDL6OPQ65ivpr/+ol5Hltphw/e6EQPfefn6Wj6uhDkvy/fMi3gec+fOvT537tzrVd0PJrVq1SrWaDSb2Mvz8vLs5HK55YoALwC5ublOpREiZs6g69evb6uCLvGSnZ2tyMvLs6/qfkg8X8rllCAIohaoChQyANsB/ASq7OdaAP+Utt8TQD8AGwBwVrKobEqrYajK2cYisdsSBFEDVCnRVwGMIUnypBWHigKwnPG7C4BUBweHaqEUXR368J8kNZX6mqa/SEkS+PhjoHdvcV+3H35IbWtJIr9RI2OUQGKi6TGZ6PVAWhq1bWqq2TYkSaIoPR2oUwcODg6mTgl2e8y22H0AqEiKTz4xWl6LF1PnwzUuTORySskuIoL7vIWqjfBNyUZEiIui8Pc3r6YhlwPNmwOMZ0ilcsDx4wMN0Q49evxautwDanVvKJXO2L49BEFBhwz77N79FgCYLNu+PQSvBnoDmzaZlzEA4DB+PNx0OdSyadOA6GiowJgQoq+BgwPQpAlVojQqihrXgweBxYuhqdsKY2c9BDT5ht3GIhxqLINSng1cugS8/bbo6i1Pn5L497ET7qIO3kIEYrEZYXgfj+CGesUqtHntVxz4+xwWL16MPStWYJRWCwf4IkPWBLX011EDaVRDWi2O9eqFnnv2QB0WhqK7d9Ha5hNEYS1yfbqg0xez8M64D0A7FEiSMk7NDDyUQBPRHzWQBo/SlAtnpRL56emY1/cwgHEWLztJArFPo/HZ6mI4u5lHGdMFcJydjQVhunUTvlX4Hv3Tp4G+fYHhw6kUjYYNqTSLnTuN2ykUJreb4ONCH7d7d1G3boXAVxBI5ONjAv23qVEj7seAfq2IeQ3yQbcREkI5kqxpp7zFjYTOSwhLRZf+y7wM3zPFxdUm2EBCQkKiXJQ3UmIBAAJAE5IkMwiC8AXllPiZJEm62PwGgiDCAKwGsLCcxxOLGK0Hm9LtyoNZGwRBNAJwEMAuAMNIkrSkbWECSZJFAIoY7ZWzixIvBUKxu2K/NP38xG8bE2Ma0cCGGa9Mp4ewy1s2aGC+H9e2QrHPXLHkkZHA0KHUufCp/rGT8tnnzRcfHhJCbcvXzylTuPvJho73ZlsQdGQJw0pQKp0RGxts4mSIjQ2GUukMjSYXYWGmRYCGDfsN1GvXSFiYmnJihIcbS6HS1lJMjOl52tlxn9v580CPHpxVQdJnL0Sw32oka/KhwiODAyEZXgjGDCRMLIJPZCT/eHLg4+MI9Z/9EBywE8mPvBCEWQCA+riP4/gWykvZiPv2W3w4fz7uZmXhK8ihw3RAPxUESIzAOAQRmwGSRH5amqHspnODBnBr2BDOt2+jt3oREm8rwb6LdTrKv2QoCykjMUw/3uDo6Lh8uSHl4lGBx//ZO+/4Jur/j78+SUmhi0IZBkqACA4oSzZUpQiCA1GkFP1hQVmKyihlifurzLJcSKECBRktioALQYJahhQEoQpaKBBSApRCaUtHaHK/Pz695O5yl1zSdID3fDx4aO8+91n3ucu935/3wPc3xoiMgHG6D7RugrNGDZoL1OBcoZSFFU6llgog/eiz6TEJAaZOBYYNo/VzlRfCW+AqSCbbLpvlQqo/vsKVkB4eTlNuskvK0z6IPQYsnrwGXeFJPe5eN3JxNS4xfJjlWUHBZ1y5cqVWly5dRgktE44dOxY8ceLEqL/++quFxWJx0uoWFxfXBnCQe8xoNNZ++eWXHz58+HDrkpISf4amU0KtWrVu3XPPPRcSEhIMkZGR1+X0q3fv3k+//vrrh4YPH35x7dq1zV577bWY8n4wmzdvjgSArl27ntyzZ893AHXtCA0NLVmyZMlRsfo++eQT/fbt2+/96aeffnDX9p49e8KmTZvW9+zZs01u3bpVCwAIIUzt2rVLe/XqdXL58uW/abVau2ne1atXaz355JODTpw4cTchhGFlBYZhiJ+fX9mwYcP2JyYm/g4AAwYMGLh///6ImzdvBrRp0+Z1Uu6LuGjRoi3jxo07BwBDhw6N6tChw6W33nrrJNvGo48++lj//v3P7Nix476TJ082Lykp8ddoNLdatmx58fPPP99pNptrv/XWW1Emk6lxaWmpRqVS2Vq3bn1h7dq137dt25YXzWj58uUtP/roo8iLFy82tFqtKkII1Gq19a677sqdMWPG3hdffNHIjuvee++dUFxcXNtisdQKDg6OB4Dg4OBCk8n0uarcB8+b+/7CCy9Ebt++vZvValWzc8AwDBiGIZ07d/7n+++//y4oKMgjmU3Bt1Q0pkQvABvcpfxkGCYZNB3m9Aq2JxcTgLvclGkCwOjifB4hJMiTOgghtUBjR7zHMMz/PFVIKChIIicuhK9gv6ClFBJiAr9YLIimTZ2vlZtjEKBf1N27u3akFpsXlQo4eND117c7B21P+ikF65yekkK3rwcMcIqnYVmxCunpOU6Khxde2IP09By7BYVeF4C0j8Kha1oHRuNNGI2FaN48CGlpT0GvD7bHnTAfOU3HxkosQncZhgE+/BAYMoSf/nT0aJrjUEJiDbPlIyKcQK+tBQMW0QwaWAQ9chCBbISF1xOfTzcpVHW6ICRv5XvEJSEZOlwHrFYMu/9+nDhxAg8/9CissAKYCqA/GGTjS6xAm0++QUATfjD2vuvWYeC339pjOUg9Oq+9YsHJ3y/j+02XsTQ8EpH4wn4+5dlJSPzgH6SkAHt/vAFG9KeS8OJMsKhUzo+lUChl4QqnUlklpAJbcrNIJCS4f1Sk6lKp6BLltis3y4VwjHLD3YiFgOHGjEhKcigkVCqqoBg92rM2Kpqm1Jf4Kh4Eq8+Uo5BQAmMq1FRKSkrUhYWFvGjSZWVlZPDgwcPvueeeK2fOnPlMLCZFRESE0xPzzDPPPBUaGlr0999/r8jPz1/EljUajZ/06tXr7NChQ5/Lz8+XEYGHH0hz5MiRFwoKChIGDx68/4UXXjCw9bIKifLy/gUFBf5S9ZW7IEieZ7ly5Uqt4cOHPzd8+PA/L1269BHbVn5+/qJDhw6tKiws9B82bNhj3GumT5/exd/f/9Zff/31cWFhoX2OCgsLF+7du3fVpk2bIn/55Zf6ALBz584fCwoKEkJDQ/P//vvvj9myrEICAAoLC/1v3LjB6+vNmzf9ExIS+g8fPvxEdnb2JwUFBQlms/mjBx54wPjMM88MnzJlyuOzZs367cqVKx+Vn1vauHHjG2PGjHmUW8++fftCp02bNnT06NEHc3JylrD9vXLlytJXXnll3+TJk4f++uuv9QCgQYMGt3Jzc5ctXbp0c0RExGm2rxcvXrQrJADP73tqaqrWYDC03bVrV1JhYeFCznwlnD59etn169eD3nrrrfbu7pVC5VJRpYQewDmZZXcBGFjB9uRyAsAjbso8Ul7OqzoIIYEAOgP4h3M4FsDfDMNsltlPBQV5VFRI9uRr3tV2KiHiAr8nUoycsq4UI1xlTHi4s0P+Cy/Q7V5XyFHyeDAmi8UKs7mId8xsLoLlux+pVUdMDA0UypHELDaCQS9noFevb6jiQR+MLVv6wc+P4OzZQgwb9hNatapLU2lemIzeE5/Az9nxCNAAAQF+2L37CfTufRcMhkHQ64MREVKAsK5t+AFEly0Tn8Ovv6b2//Hx9O/ERGklFACNGkhd9yDSdjwInYrGwtLhOtKwAKmqJGjul7AhX7wYliyj+NxYrKKWIKMRCyPq2e9HkyZN8PY7PwJYDiAAwB4A7WDDRnz/7nqnYKaG2FgUX7rkCHwp8ugs/7QMp6ZE49CQbrg+vRs0xv0I0ulQu3FjpGE0ZlizMP6texETA4x6NQyA+PPwxhsE8fHgB8FkqBsFF1ePFNfgSUyIFvZfKguEq0fFarGgyGwWmQsGiYlAdLR4u9z+uHqFeBrntkcP8RAwp0+LKyxmzgQWLvQ8HaY3cYErA1/olD1NB6oExlS4nfjqq6+0tWrVurVq1aqDoaGhsqyYMzMzA7KzsxusX7/+twYNGvD8WIKCgqyLFy8+GhYWdmPr1q0VTiNamXz++eet27dvnzVt2rR/NRoN783YokWLku3bt/949OjRe8rKyuw/dufOnav/0EMPnW3RokWJsL6OHTsWLFq0aEtYWJhFeM5THn744b8mTJhwlu2XRqNhPvvss0M3btwIfvrpp4/FxMRcZJUFAQEBttWrVxuOHz/Oe7Pt3bv3rp49e2bEx8dncsen0WiYSZMmnRk4cOCRZcuWdZTbJ2/u+4kTJ+rfc8892d26dXMK5qnVai2ffvrpD927d7/MHktMTGzRoEGDidnZ2W6VSgq+o6JKiToA5EbZuQSgqvYsvgEQTgh5jxASRjg+EOVZLV4H8ASARBd1vA1gKSHkCUKIfVESQlSEkFagMTS2MAxzmXNNZ9C4Ggo1hZryVeoLvNm+BOg2qidfs65yDjKMdI5BT7Ym3ZUVy98HOFtpmEzAOkF8pvXr3d9vGUoei8UKs7o+r5+sMM3FYrEiOno3IiO3wWgsBFCeprPH14h++SgstvLXD8PwJLFcBCITDVFWxsDPj2DBgh6YPv13+9/33BOKr5a1QVrOdOgYmu6yFa7g71uz8ffPkWjVqi4Aam2QltIVqX++Bg1T/vvMbosuWiQ+fpuNrqHFi6WlZRZCgBUroNHroO3cijdvWvVNaBI/k0yharERRL/wm/PcRG7DoEE70afPdrtCJm2GCnrk4BwaIApTYZ7/uX3em9W9AoKxoDk6egDIBxCL7Tk7cCU7G0HNm+OptDQE6/X27BdFZrO9H9xH58ABIDzsBjKPXcVNoxElV68ioEkTMADMl/2wHivA/2lUQcxNAwDmzWMwbBjfzY51m+AuwaAg6UdKjnDK7f/Bg67TU7Ln2CWtbWTB7uhobIuMRKHRiNGjgZ+3mjGi3v+Q0GUiRr3g+G7NPHIZu3+65fT4uBKI3e3Ic1/BUhYjbH/T06UVFjNmeLbrz+2zTkcTCFXXz4AvdMqeWj1UpXGdggIAlJSU+IulAo2Oju7j7tq///67XrNmza560t7hw4frNWzYME/l4oWo1Wqv//PPP6Ge1FvVnDlzpl54eHie1PmAgABbUFDQzRMnTtitt/V6fe7PP//c+tixY6IZ+saOHXs+IiKisKJ9u/fee53uiZ+fH1O/fv28jh07Op1r1KjRLbVabbt69ao9Mv+MGTP+2bZt205hWZYOHTpczs7Orie3T97c906dOuWeOnWq2c6dOxvYRH6AHnrooevDhw+/yP49bty4c1evXv2oadOmpU6FFSqNisaUKAMgNyXETVAlRqXDMIyVENIPwGwAvwDgKibyyo9FMgxzEwAIIX0ArALwAMMw+eV1HCWEDAHwHoCPCSEB5dfbAGQDWAlAKN3VB7CEEOKUcI7DvwzDPFSxESrI4k50qJVyZJaKZrZwITXLZ5HjzMx+QUtJDxICqM9g75sQ1i2DawVRkVgbrIP2gQNUCurVy36KVTRkZFyzB5w0GgsRFbUDERH1kZraDxoNlTByT5xFRvpFZJlvISpqhyNjhrEIQBPkIhBa5Ds1r0U+9qqWok/4Ypw1FmPoUDbIZTA2beqHDh3qQzN7JoLAV+w3Z64CJRdB4+iW15V/AWB4GwZ0HqRQqeiY3SkkWLj5KcUc200m58iRAHJVIcgwMcgyFvDnJqsADAO0bl0XhBD7HBueycTDz+xBRERbhL0+yF6Pvl09TOrwGT768xXY8BsImQ9C3sVfthK8B2Dl7Nlo2LUr+m3ahN3Dh6N+RAT8w8JQZDbDPywMao0G4eHUgoEu6zCoVGkY3WAWulydj7IiaslRoH0ejFnM0ldcKWG1Evy84xpstvqC444lKBZLgsUT4ZT76MfFUV2jEPYRYQNfhocDReZcXMvIsCtrzMN+RPw8PRi8hS9/twLvGzH05ZZY+L8b+DixARiooVIxSEwkdpcJV/EQXD2CjvmmfYuLk9Y1zpvHVzwIz3vymAv7zLq4LF5cfT8DnsaD4OLNa85VWBsFhcqgdu3apQUFBSJvJvfcvHmzlr+/v0dx3goKCmqdPHlSz8YdEKOsrEzdt2/fLG/6VFUUFxfX2rZtW8+vvvqql1QZq9Wq1mg09rdAQkLC4WeeeWZgnz59xpSVlam5ivGAgIDixx9//I/Vq1cfqGjf6tSpI3pPatWqZQ0MDBQ95+fnZy0qKrJn+fDz82MmTZrU+ZtvvulSUFAQyMZ/4I7tnnvuOS+3T97c92eeeebSDz/88MeIESOeKy4urk045o21atW61aFDhzMbNmz4iRu3Q6HqqahS4jIArnaLXaBi9foBqLIYCwzD3ACNYeE2jgXDMHsBOO0fMAxzFIDsFKAMwwz3oIsKlYmvIovdDkgpX0wm+pUvRI7QPno0EBxM3Q6ESFlK+AKprVRC6LiEbhlSQTblKk42bXJIQuzcDRiA3IMnkXEsB1nGIidhGgByc0uh1QYASUnQjhsHg60uojAVWVmOrBh6XQAMF5ZAy3AUEoTQdsqlBN2KeVh3X3+nIJdduzakc7F4MZwQC1ogFZhTSjERF0eVMMJrRBQLYBjn9SJUjoWH09QA3PgVKhW0iQth6P+0PTaGfW70wTAYBuGuu+o45hKArntr/JxWH+HhoXalDwCoNRokHBqPCSdykV3QGK1azcaVK4/h/4YPx6nMTMSMG4fHPvwQ0YTgyZQU1O/QAcWXLmFHVBTqR0SgX2oqzFc0glcCwRfX5uJurLcHuBzy6WTMHcrAZhMqIcSDWqpQhltJL0Gl2sq7Rq1m0KoVEV3OKhVNaBIU5CyccnWLgLOe0WqxoDQ3F5MmabFokfOtmj+fPiJsPfTWaDHIYMCOqCgYs0oxa54eDJuJBGrEfahD3IcMGNS112OzEfvr0p1ALLX0AgOdX8GLF4s/rgcP0mwkYgoJQoBZs2gyGLnxcaXcZar7Z8DbIJutW4s/mocPU0MuKSqiCFFQuB1o27bt6T///HNTdfejoowYMcKQlJR00H1JSmhoaJnBYPhW7NzJkycDH3vsseGfffbZpQkTJpz1XS+9IyEhofV3333XYevWrRu7dOlyQ2jhsHr1at2yZcskFTJieHPfExMTf2eDf3LJy8vzGzp06KOvvfZa76+++sogdq1C1VBR941TAB7k/H0FNHOE2E9fU9BglwoKlc9/xaHWlV1vZqa4o7mYUCsGK7R6c623uHK+F4PdDuT202ajNuDu3FQWLqQ23dy5GzsW0OmgjX4UBuMk6BvCLkyzbgYGwyAqRHPmXofrSMZqXvXJG/pBt3I+32Z75UqeC46xf4xTTIXYWAN1dZCai7g4IDycH8ciPByYPx9mEgoL1I5t0aFDna9ns4iI2ZQvWOAUo8EuYbpzgxo9Gvj9d2DyZPqvPPYIm12ENzfl2UU0GrVdIcGi1QY4FBIc23+1RoPWnRvbvWkeeOABHD1+HHFxcSCE4Ifz5zH93Dl8+vTTyElPx46oKBRkZeFaRgZKc3PFXwk2gsMYiuugQVlPTh6K0aEzQDj6cwIremANVIJkTWo1g9EN3oTm4mE8YksAKT+vVjNYsYJIWhHYbFQhIfReErob6HR8dwmrxeGGEWozYuVK2hbbx/lzyxAfL+5qEaTTISo5GVfQ2q6QYGGgBiOaRYS+Lt25AUi5JogpGWw2uny5ZVldo5TXGMNQhcQLL8h3f3DlgXY7/gwIY5SwzJwpz1OtpgT8VFCQIjAw8FZpaanLjVKbQFscGBh4q7i42KXP/48//tjw9OnTXltp+/v7l1ksFtFAmRqNRvIcQANdymmjdu3at1wFzASo4C7mdiDG/ffff/PRRx/N+OWXX3Tc435+fmUFBQWygn76kj179rQcOnTokW7dujkpJADAarU6/QAFBASU3bp1S7Svvr7voaGhZRMnTjxy4sQJnfvSCpVJRZUSawBEEUIWEUKaMgzDgLpGvE4IsSdEI4R0ADASwN4KtqegII+a4lBb2TEtxGIvuJImALqdKtdePDGRL6SKRfHzJYcPix8Xc9R3BaucSUkRv8Zk4ru1cNspV+TocA3JOQt5p1lhGgBP4jSiHmLxIq9sbKwBxv4xznFAyqUEs7q+I7uGPtg5k0ZIM/E1PGmScxyLpCQYp89DJBOPaIyD5cWxQPv2NKClkJkzad9NJuc4JfHxKJd2He2NGEGVPO5ikrDZUpYupf+6d6f9EglmaVe8uEJGZL/atWtj0aJF2LNnD5o1bYqrAN6/eBEvRkbiWlYWgvV6DDIYEKDVSjwODLZgKd5QXcDhBjNw02hEj5JPsaxpb6z9NAcpKcDJg5cwUf8B1vYfh90/3cKhQ+x0Edw3ZjRm4Tx2YRoYELzynAnnzhEMGEDLiMWS4L6G0tOBt98G5szhB3fkhh9hl3LWies8N4wn7tuHpU0jEYc++Ej3EF4bmSOpo/zn92wYYmPRCJk8hYsr2H7KiYcgFu5G6hU8aZKj7Jl/LXjucRr7w9GOsyLVZqOhYg4ckBdSR0xXKRzX7YKrmL+3o4JFQUGM+++///qFCxcaSJ0vLCxUnz9/Xss99sADD+RdunSpQWFhoaSgPW3atP5paWm8ejUajSUvL0+WpXiLFi3yjEZjfU/PAUBaWppIXnRnWrZsmXfmzJnGUudLSkpUkyZNii53iQAAdOrUKebgwYN1pa4hhDBCN4kGDRrkHT58WLK/lYXNZlOpxV7s5ezatauF8FjHjh3zrly5Ul9MEePNfR81alSvN998M0KqvNh8KVQ9FVJKMAzzJYD/ARgLYEv54ckA/AFkEkKuEULyAPwB6urxRkXaU1CQjS9SOlYUT8Ole1P/cBGPISlpQqWiO+FsxgU5DBjgrJSorLxyJhMVmKUQ+wJ3FTnPaqXuJ2Jzv3+/2+5QRcMo3jGeMF0udZkRQl030BB65CDt6x585cLlElGJIizMHxER9e3WF7xMGhH1EdaupeQazs0tRUbGNdrGg99g39h5iGKmIAsNcQJN8feqHbwckWaEUAsKgErA7HZ8UhJ/K9VkAvR6h/R34AANJOouwp7JBMvYV2BmODG3GAbHxryHPg9ulVa8lFt6OGUvMZlgHhvvCBLqJrJfnz59cOKvvzDsscfAAPgRwDwAd73zDoJ0dPND+DhwXTJsNoIvrs+FRdcLTfr2xah9mxE7oSGio4F7uzfF4LQ0PPft53ikfy107Uqn62Z2dnlsBrZCNVZsvAtrPrtuf+x79JDe4R81CujWDfjf/4DZs10mP4HVCmQXNMYgg8EezHN7ZCQ0xv3oor+AUb9tRIBWK2kgtv6ZaSjIyoJO74+EmVl2qw9q3eH87Ahfl3Ji7Ap35F29gsPDgQd7WXBqiiMAJwDE9DdiadNIPH/PRtE5uHlTetdfqP8dPRo4f56+7qrzZ6CiuDIeu90ULAoKUgwZMsRssVhqjRs3rjs3lWNJSYlq7dq1zXr16jXMz8+PZ652//3339Tr9dlPP/30AKPRWJt7rqSkRPXmm29GXL58uf6QIUMucs+1atUqe/Hixe3lWB6MGzcu8/jx4/oFCxbcY7FYiODc6ePHj+sTEhJas+dsNhsOHTpU96mnnur3559/SqSl4vPyyy9nnjlzpmlcXFwnoaCdnZ3tP2zYsL5t2rQ5GxQUZNcoh4eHX3v//fe7X7hwwcliwGw2a37++ee2vXr14v1gRkdHH33vvff6p6Wl1ZNrdeELevXqZdy6dWvHrKwsnuXCyZMnA0eNGtXr999/d5qnNm3aFDZu3Pja888//9C1a9d4CiRv7nu7du1yNm/e3OXw4cMhwrYsFgv5/PPPO7Zp0+YOiIh/e1NRSwkwDPMOgAYAHiv/+xSA+wEMAfA+gLcAPAmgkyBThYJC5eJttgpfUNlJ4qW2z1xJE+fPU3cFT5CSclihVSzEPvv3b78BFy/yr3VlOeLOdUPsC1yOu4cXc89TNDRgkPZROPS6AL4wXS51halKEIFs6JEDw/zG6P1Me9dpOsvRaNRITe2HtLTB1PrCZILuTDrNpMEG0pRYw1ptAG1DF4AsYxEimWnIQkO0RA7uxhU8i1dgZEIBUOVKJKZTCwqoHWuGYej2PDsvXCVa9+50G1/MBl9EOWT5+19EM2MQiek0nWd5u0MwHsUFFrRsKaF4CfMXz16S9rfD6oMV+t1sC6tv3MDT//yDlwEEATABeHTkSHzwxhuwlsfWYKeThurgb4pYrQQ3X/oe9y/7CsHNm/POBWi1UGsclrhFZjPWPTPdyRXCBj+8NTeE99iL7fCnpwNr10oOxXls5UufdcPgEpWcbFe8iFsnMLg3orbdaiRubmv8sSMDU1WPYC5aYGyDN6BWsW4gZXgiJBEnf7/s9Lr0xg3A1Su4NJcfgPPSvn3YERWFQ8b7sPHfYZJzIMaaNeL63/Bw6qXly5+Bqk7oJGXwJkxEpKBQ3YSEhBTIKVe7dm1rUFAQLziVRqNhtm/fvunvv/++q0WLFq8FBwfH161bN+7uu+8e++mnn3abNm3ab/fdd58xJCSEF4jw66+/3qZSqZhOnTqNY7N9hISETNVqtRN/+umnezdv3rwhJCSEZx72+eef/3zs2LFm9erVi5syZUon9nhgYGCJsP5mzZqVrlu3buP69es7N2rUaHLv3r2fZs/pdLqSNWvWbFq7dm3XRo0aTQ4ODo5v0KDB5Oeff35ISEhIyZQpU36QMx9ardaSmpq6bs+ePfeEh4dP5I6jQ4cO461Wq2rbtm28+BGff/75rzk5OSH33nvvpKCgIF62kzZt2kzo3Llz1sSJE3k/mO+8885fzzzzzB8xMTExoaGhUxMSEuzKgMDAwNK6devyMk0EBgaWCueDO1d169a9JXGuqHbt2vY5f/PNN//u1q3bmW7duo0NCQmZGhwcHN+oUaPXoqOjn65du3bZvHnzvg8MDOSlNlWpVNi6devWnJyc4NatW09o1KjRayUlJfY3oaf3fcqUKZmdOnU617dv37FBQUHTuPPVsGHDKbm5uUGffPLJb2x5JSVo9UAYV9szCtUOISQEwI0bN24gJMRJwVelFBcXo06dKkmgUvWIZa+QymghB4OBfiGLHXcVmayi9aekANHRFa+fxWSiX/nCyHSsfblKRbeC2d10lQoYMgTMli3IA80XrF25EmTMGPfZUMTaYmGVLUKJQphdxBXcuTeZqKWA8P1XHk3OAjWiMQ4ZaAoDFkOHazCSMEQ1mIOIns152TdgMsFyMhO59ZvRlJnlmI+cRljXNo40new4zp1zXk9JSY4gkYRQFwp30lNSEvaNnYdIxqFo+gafIg7D7FYbyViNWLzosOLAAudMICkpQM+e4nM/e7Z4hEHBGMxHTiOyy2bRdls2q4Ovtz+Gjh0dFrRmcxHCwvyh0ahhNhchMnKb3Zpi5coeGPviPmQZi5z7vGCBqGKtyGzGtshIFJS7bLSdPRujJkzA0VL6jdW7UyesmTwZTdq2RUDnzhJLjVpOsEvzuccdmTuEnM+yYMWwpZh7ZCrAUUwQWJ0UFYDzYx8TQ6ddCu4jxl36hUajPVYGC6tsYBUTSUn8jAvz5gEd299C87BraN2ZWghbLRb8OGgQbmRm4qm9e5Gn0uHEvss4M30IWndsgH6pqaLj9jXC8VxHU8zCeac5dJU8iT7KxWAYx2+T1GPmzSude40wm0hVZfIQ3tMpUxxhYRS84075nsnPz0fdunUBoC6bPc5XEEKadOnSZe7q1atzfJFe8r/GnDlz7vvuu+/u27dv3zfV3RcFhZrOwIED2ypKiRqOopSoAsSEZaBiX59iUo/Ul7I3VHb9XLhfxGK5+URgAIdSQqUCOXiQ2rIL+7thAw2oyfZZ+PU9dy6NgicWOl5KiTFiBPDll3yFg9jcCNtasYIeLz9mIbWQywRAy0nJaVbVQ1jmMWj0MuIhyVVMiSlICAGMRul7aTLBqOtod9lg0SMH67EKIzCGf7xJLRgmlED35gTnulJSgAYNxPtKCI1BMmsWf55EngXjglWImnGZ325DwHD4eUccDlBXDW7GDQBIT89BTMwunD1bCMACQAN9fRsM196ADtcdjUiscTYI5LWMDAwaPx5Bs2ahwGbDVADrCUExw6AOgBcAzP/wQ2hefBGr12kwcUZd2OAHYXYNtZrB0qaRogI693VBs4oRu37OZnPO0iHssivdm0pFE8L07En/5mZNECpeopKTYYiNtf89OC0NAVqtvY3Tp6lFxsyZ4q8xNpMHew0AXgpVth5v9bIs7uq4tG8ftkdGAgD+QR8shnPwc1e6VvqYFUOYcVz4mHmTIVp4DTfWB1B5r1wx2HtaU7NoyFkrvlhPvuJO+Z5RlBLVx+uvv95Zo9FYFy1adEzs/Lvvvtvml19+0UtlyVBQUHAwcODAthVy3yCELCaEJBBCmvqqUwoKlQ7X/lbKzYIbdc4b14vKjmlRlTEzRo+mygFCPMuMwWKzAWlp4m4AwpgPQnvvadOkbcalXDdGj4ZleSLMqvJsxSoVMGYMzJdLYLFYeeWc7Lo5xzTjXuIpJABAa7sOjVFmynMxu2ux7CX794un4TwgnWLcfPCkXSHBWhPokYMsNMQIjMFi8Lfhk1Meg+7RLs6ZNVQqKgGzOQeFMAzQooUs+3fd9DFI/noQv92tTzkpJJxcNYyFGD58N5o2DeJf+66Or5AAJF041BoN+qWmYnBKCoJmzQJsNgQDWArgT4ZBL1AFWSKAqNmzsbpDB9T79AHMQQs8H/IuxFw5zhpr2TN3sAhfFwxDLSuWL2dvobNCQvhYuvI4Skykwjcbd4G79P3DwlA/IsJuGXFX7972GBP1IyLgHxZmryc8nC4zViEB0P+OG0cVFeyccRUSAN9NxRchcdzVUWg0whAba/9bLBCnWu1Q0oghtnSFrh6eeNOxPw/p6c7XCB/Tqgw0WZOzaMhZK5UdYklBoapp1KhR0c6dO9ucPHnSKQe5xWIhBoPh7nvvvfdKdfRNQeF2pKIxJS4AGA0gixCSRAi5zwd9UlCoPIRfRsuWiQvLvvj6rOyYFpVZv1BxM3Om60h8riAEiIyUztEnlBDkfn1LhPe36PSI/r4ZIkPnwIj6gM0G44oURHbZjOjuSXzFhFhbrETHWswI6pcdWU5u9hKO0CuXsAfuRQQu0jgWWITeOAODain0ugDc/eD9mKKdxCsf+8x2GLs/5rzNO38+lZIB4OmnxRvLzZV1T4zGQsTG/8VvV5BlgxegM2oH9u27ZM9AcvAgP+RQbAJ1meHhYv7VGg0C8vN5z3MAgNYAfgUNcOQH4BiAWTk5SDMa0bQJg+5BPzgJwiqUoUXTEjy+cydPcJcKsVJcLP54bNzo/FiKLVtCgEOHXD/CdsVLWprdVSNIp8PgtDRRdwupdKRysuX6IiSOuzqKzGa760awXo+n0tKg0/tjBMbZA3HK0bVqG1mwZE4eTz/78fw8aBs5XKHlZojm/jwIDbvEUAJNylsrlR1iSUGhOpg1a9apJk2aXO/atesEYVyHhg0bTrl165bfvHnz/qjufioo3C5UNPvGEgA60GCWAwH8RQjZSgjp4YvOKSj4FLEvo8WLxfPWudt6E9YrFvmMtVX11N7Wk0hqlbF9Jkdxw6JWAyNHclMaODNvHnXB4Kc+4OON0kfCWiS3TgNkHMtB1jUVohCHfbjbHrQy41gOck+cdV93Zqa4lDlliuu5Ft679u3554XZS5KSgFdfda6HEJfbwxq9Dqmfd0KaahG1JlCroUuch68SO+F0Zh7Omssc2S50AcjKAaKYKTAjxFH/jBn0H5uJY+tWFxPiGrO5yHV60/LMGvYAneXnIiO3IyurAH5+BGVlDPT6YPz88xP0vLEIUQ3mOCxe5EioElEB1aA/UjsBNAVQAGA5gM8uXgRz8RBGal6zC8IqlOH/MB6hzAUcnDoVVovFZfVqtbjOTWqHX2zZrlxJHxF3uLNu4CIVIFGOQChXiHeFuzqkLD8e0++1p191p2tl3XZCV/TCX/uyYTAAf+3LRuhnnbE7Otp+7+RkiBb7eRCiUjnqUamoAVlNtFyoSuSsFV+sJwWFmoafnx/z008//VBYWLiwsLAwoaCgwP7vxo0bi/fv3781NDS0zH1NCgoKgG+ybxQwDLMAQEsA40Ezb+wjhOwlhDxW0foVFHyG1NZhXJyzG8TKlfJcI6RsUr21VZVzXWWGfxf7Ml+yRFxJk5JCLTTWrHFYbCxY4Jg3QoC33nIEJmQtO1JSpJU+no5NxFpEqw2AYX4juztDJKbb3RwMWARtgZu6TSYgJ0fc1WHSJPFrAOd7N2oUzWIhZnWTmuqwD5eyQBFaVAjQjB8D7fnjjrEDaPNYJ7S7dJiOdfxNmu1ihh/0yEEEshGG8oDnDMMPYOnKCobjFiCKyYSwEwcRcXcd6fSmYY4A1jpdEJKTo3hVdC/7l8afMAxCz56ca3s2R1jmMfnWQGISf7nSrBA0L/UsAANAHS0OgFpQBNfZjjlogTj0wRy0QDtsQcHFy7h67BjPfUPKa0qoc3OnP6mKxEBsX8UUE+4EQjlCvDvc1eHK8oNNv+pO4Ldn8Dh3DruGDUPuiQzsGjYMBVlZPNcbOd5uUm417BjUalrH/PmO0DozZ9YcN4SqzgrCImet+GI9KSgoKCjc2fg80CUhRAXgaQDTAXQDkAGaMn4zwzBWF5cqiKAEuvQhUsEhN2wAWrYEbt7kWzW4iywmVd+BA+JBHYXR7sSyfbgLXulNtDZPkArOGB9PlRNiwQ6FYzGZwGRmIq9hQxTXrw+tVgsiFPClgkz6amwmE/Y1i0IkHJka0rAAvVVnaWpUqfvAj2JIywhTIIi0hf37geHDPXNxcRc01JMoepy1Y4EauQiEVn2TXr9/P8wxYxGGm9DAw1ewSsWfLyGc+bKQWshd+Bm0U8fYT3OzbLAYjYWIevAbZBmL7MdaIgebySp0Nf6G4rAw1KlTR/Ra2Qie3aIjR7DtqadQcPEignQ6WMvKcOLiRXwBgIqtBA9CgxiUogD1sAhT0RTZiGv2A4b+vt/JOuF8lgUnjxYgonuYfWqKzGbkFIfhrFHj02CE7BINCqIZWj0NEpie7v51JMaoUfy0pSNHUv2jJ4g95r5WwBQajZj4wDKsyV0ABmoQWDGmwWwsPjLBruxgcfVKd/U6Z38agKqLL+wJlf2zIKd9d/e5KtaCJ9z23zPlKIEuFRQU7gQqPfsGIaQPgJkAHgVwDsDbDMOsr7QG70AUpYSPEWaS4Ka29PRLTkqAX7yYWl+Ile/TR/oL0l22hqrIuOGqDcD5i15iLAzDIC8vD8XFxeJKCbYttj7Adbsehmw3/p6JqB4pTpkpDLP8oZsTT9tetozeK1YBMWsWdTUR9mHjRmqHL2Upw7Us8TViKWTFFFqu1k6rVuLZPdwFLpV6JrhSslxpt/wac0gzRA5Lp24eYilLt3RH6OO93b9nPAzjz5r55/75JxiGwU2jEYE6HczFGryVE4oSHAYANEAtlGEs8tABjdTXsOSRPxCzYz3PPYKX6aM8Fec/v2dj3TPTcV+EP5779nOv02m60pGxsLdlwAD5U+CpQOjLV01lZ42gyWuKwDCObC5qFYNz54nH7QnnW5idt7IzPXtDVSZictcPd/e5JmUQuSO+Z6AoJRQUFO4MKpx9wx0Mw+wFMAzAGgAtAHxUme0pKLiF60LAze/mTeQtTx3MWfcEqYhf7mxcq8Ix15WdszB+RUWjl3Hrkxrbhx967AZjPnIaUU/8LJqZImptGMyLVlEhPSGB774wZ454Hxo2lLaU4WZpcYeYYsYVYvbNUu49rtZOeDiVrLjO8CtX8u8zIfzz8fHUQkJsu9NVJECx9bhwIZ3vvn0R1rUNIkIKoNcFwECW0ACdWFTuXnIRYZ3ucT8vrlycJGzYWVeBQb/8ggYdOyJYr8djX27CMx9+iPQtC1BXFQsgGFdxC3lYgQCkYkaj9Xji0zlOCga7y0BWFnZERWHxrEzc3+MufGj+ErG7ViLx4yJ4g3BYCxeK67tsNrrsPHksPHUX8eWrprKzRhxPuwyGEWRPsRGc2HdZ4gppBgzg6+6EIWBqohtCTYnXIOc+1+QMIgoKCgoK1UulKSUIIXpCyBLQDB3/B2A9gIcrqz0FBdmEhwMNGlQ8w4Y3DuauviDdOT5X1RexXAnGl1/DUlH5Pv9cXOkh5UCdlEQF39zj/MwUrODbKgBh0ybId7NwNb9iqTy5DB3Kv5esM7oUXMWAmNN7erp0qlp3a2fAAGrxkZJiVzZYXhgF8++n6DwajcD58zBv2QVL5lkqEYtZO7iLBCicr4QEYPp0+zxpmFtIPf460r7uAd3K+TRAJ64jjSQgdU4LaPQ65zrd9YGdAzfxWNQaDYKbN0e/1FQ8Nm4CXnxwPR4dl4laQ4diUuAJAO8A6AjAiiLsxqfmv/BF374oMpt59fiHhaHfpk0I1uthzCpF/Dw9GNB5Z6DG6zPq4nyWBZ4gNixuOk8hDOO5LtATgbAmCt9iFJnNyJoxBBDJnnJm+hCne+cOsfi23FdaVWZilsvtcq8UFLzh9OnTdfr27fvkyy+/3K26+6KgoFC5+FwpQQh5mBCyFcC/oMqIZQBaMAwTyzDMCV+3p6DgFb76kpMS4KWOu2vXlUKgKr+I5UgwvvwaFo5NCquVul2ICZ/lgSM1zC2kIhFpWEAzUwDQqfORltAYqbMbQsPcct2GK8WAJ7z6Kv9ePvccP6iqEIYBNm0Sv/dJSdQywZXEJLV2WGE9JobGvdi5ExaLFdHRuxE5LB1GfRcgPBxGWygip+cgespJftpUFjmRALnzZTLR7B4CNDYLDTY6ejR1l1GpoGXyoHlTRtRAKUXYgQOyrXbUV66geNYHyEATZKEhHkU8Pi2IARAM4GUAo0BIHWQBeOPiRaz9+muwbo6s68bu4cPRdc4cXEFru0LC0R2CzS+8x8va4Q6pGLyudFjCKXClC/Q0CGJNFL7F8A8Lw5l6w0HDllIIYTC6wZto3bEB/N0FaRUg55XmTmdb1QEnb5d7pfDf4MCBA6GEkHdat249SqrMu+++26Z169aj6tSpM0Oj0bzRpEmTl0eOHNm7qKjI6Y3XqlWr4mPHjrVau3ZtX7HzCgoKdw4+ecAJIRpCyChCyFEAewDcDWAcAB3DMG8zDOPZdoWCQmXjyy85KQFe7Licdl0pBMS+iKsr7Lqvv4ZHj6ZBR12hUjniQAAO4XPhQprpovy4BlZoUe5eu2QJcO4ctFPHQNPmHteSnloNHDwoz869Vy/X/WRdJ/r0oZk0mjd3uIyMHy+egaRnT+d7L9xGF17DlZjCw+nfmZkOixIRYT33xFlkZFyzp+zct++SPaVnRsY15OaW8ts3GGgMCTGJTWq+XCkxWFemGTNkb/lbLFaYQ5rx+mBGCCwqDd90gEVKUl+2DFomDwYsQnPkwogw5IKmHW2CPOhwDxjmLdT2vx8lVismvPYannzySZjNZp7rhmHECDRCJojILn2AaS9Kc3NhtVicduuLzGa7woI9LyUMz5/vXk/HlpXSBXqbCMgTl4/qegWZr2jw0YnXwP2UUakIpv04Bf1SUz2O7SH3lSb1ivZ2ritKVWRzUVDwBQMHDhz43nvvRWdlZTVr2bJldkRExOnr16/XTU5O7teuXbuR165d8xNe07Vr11MlJSX+K1eubFkdfVZQUKgaKqSUIIQ0IoS8C+qi8UX5f/szDNOeYZgvGIYp8UEfFRQqh+r66q7oFyT3i7i6voJZfD2HvXpJKw0IAfr1Exc+Z8wQd6VQqagbBVd6GDPGuRzAd7+RY+ceHk5jL4gRF+e4Xuh2wTDAqlX89KmuFDr790vb8dts/NShwvWwbJnofGk3rbCn3czKKkBk5HYafLI8padWG+BcX48ewAsviLsrcecrPZ0qjm7eFL+X8+a5dmXKynK6hGfZMXcFoFbDiHqIxHREt/8Yli495FntmEzAokUAAB2uYw1W806nYCV+w0LoYUP/Bz/AggUJ8Pf3x/fff492bdvi+3370G/TJhA/PzBlZaiHbIzAOKhQBoAqJF6q/wZG/bYR/mFh2B0djW2RkSg0GgHQTBHbIiOxOzoalsJC+/lQm7FcGKZrWEWsWP5pGeLjHY/XoUN0WsWYMkU67Imvwr5I4ctXkKevWbqEBPEkrEB2QWOvg416+3qu6FxXFCVeg0JNZ86cOfft3Lmzu0ajsWzevHnV33//vf6PP/5IOX78+MdarfZKVlaW7oUXXnAKJfvMM8+cAoBt27bdV9E+fPnll03btGkzIjQ0dEpwcHA8+69+/fqTevToMeTQoUN1ueVnzZrVvmnTpi+HhIRMZcuGhIRMbdy48asvvfRSz5KSElly1OXLlzURERHPT5o06QF3ZQ8ePFi3TZs2I+rWrRsXEhIytXnz5mM2btzYVFjOZrOhT58+g95///028mdAQaHmUlFLiW0ApgLYDOAehmGeYhhmT8W7paBQRVT1V7cn7bqjur+CWdixANIShdw5ZLcqxYRZQoCffnI+zmZREYNhHEI724fERPGyGzd6riCaNElcGJ40ydGmlNtFly7iVi8pKfQfGychJka6fTYSX3o6vWbMGP56SEgQv27xYuhUeUhOjuIdTk6Ogk4XRP8QW1/r11NXCSmJbdQooFs3YOpUYNAgmmqXS3Q0MK08TauUeYBezz9mMiF3+x5kHMuhlh0rArF3wxE81DgBWWiIjPxg5NZpAPOCFdRqgq1HTMnDCRpgRD2Mxkje6Vi8CICmj90yvR6m1Q/FEYsFnQDkXr+O6OhoTF6yBIFdutivicQXmIMWGItojMbzGP/5MwjS6ZwCYl7atw87oqJQkJWFaxkZyD99mnf+ifv2YWnTSMShD5Y1ewj/91QOAMfj1bUrnT7hlKlUjuUmpLKDIPryFeTNa7ay4il483quKQEnFRRqKitWrHgQAJ599tm0oUOH2k3IWrduXfThhx9+BwA//fRTtwsXLvhzr3vppZfO16lTp/jIkSP32iqQ6erIkSMhr7766rCXX375wJUrV5YWFBQksP9MJtPHDz/88Jmnn376edZNJDExscXq1asj161bl5qfn7+ILZufn79oz549aw4fPtxi0qRJXdy1m52d7d+rV6//u3jxYqObN2+61Za+/vrr/aOiok5dv359cX5+/qI333xz1+TJk58WKdfl4sWL9adPn37KqwlRUKhhVFQpMQxAU4ZhJjIMo/z0Ktx5VIXg760VRk36CnaXEcHVHArHP3o0VRAIkfoYGTdOOrMFV2h3lbqTdZ3wFFf23nLcLoRWLzodVULExADNmklbdXCxWqniw5XyQojNBuOOfYiNNfAOx8YaYDQWOpQjYuvr5k0nJZTFYoX5h/3A2rX2omaEwHLmHP/6r7923GexuZs7FzhzxlGmfF1pox+F4cJk6BuCKiZifsf5y2XQ6YJgMAzCrVs2RH4WiOhHNsPy0x7pLe5yKdaMEERhqiNDC1noyNCCqYBKDU1oEDBuHNoyDA4CmA36g7lh40a8np6Ok5xq/8IArMImrEQKug3rhk8X5CJAq8UggwHBej0KsrKwPTISBVlZCNbrMchgQIOOHZ3Oa4z70UV/AaN+24gArdap+2JTlpgoLTx7K7TLfSX56hXk7WtW28iCTxbk8cKafDw/D9pGngUa5fbD01exO+8mJeCkggJw9OjRYKPR2AQAXn31Vaf4ci+++KKxbt26+WVlZeoVK1a05p7TaDRMp06d/s3Pzw8WsxiQy0cffdTu0UcfPTpx4sQzGo2Gt1MQEBBgmz9//p+NGjW6tnbt2uYA8O2337aKjo7+vW/fvrnCutq2bXtz8eLFP/3444/tXbV57do1v969e7/QpUuXrH79+h2T08/z58/fNWHChJOq8hfK2LFjzxcXF9fmurasX78+fNOmTb23bt26pXbt2pWUk1xBoWqpkFKCYZgLvs6LrKBQ6Xjy5VnZgn9FrDAquk3oK5cUKYkiO5v+7WoOpcYv5sYhZj2hUgGzZ9OdeSmsVn76TyGuXCfYOUpPl54rob33gAH0/6XcLlQq5/bYOZSbFURIeTsWqGFGCO+UGSGwCIIxmhGCqAmn7S4baWlP2V05orpsgFnXTnxOCaHri3PfLDo9orsnIfKF4zCWx2awu1ZgHL9t4bPDnbt582jKicceE82JqWNykZzLt/woK72FCxcKHfEwzhQjN6K7tJReLtWHqUoQgWyaoWV+Y/ReORMG1VJHatLPFgCFhZwYJcAHAHYDaKxS4ZrViqUAvgoMxBU0wXok8jJwTJxRF5lHLiNIp0NUcjKvC1HJyQjS0Swj7s6L4Yl7gTdhXzzJuOorSwVvXrNs0NHQzzrjjz3ZMBiAv/ZlI/SzztgdHe1RoFHAu1exHO8mxZ1CQQHYvXu3FgDq1KlT3Lt37zyxMi1btrwIAH/++aeTRvbxxx8/BQApKSleu3BcuHAh9J577rnqqoxOp8v9559/6gFAjx49TDExMc7+hOV07Ngx//r163WlzgOAzWYjI0eOPLB58+Zf5PazrKzMLzg4mBesyM/Pz1pYWOgHACdPngycNGnSkGXLln3Vtm3bm3LrVVCo6SiRbBUqh+qKfOYOT788KzPfmi8cvr0NNOlLlxSp1AFnz9L/l5rDwEDp8YeH0y98YZ3COthtYjE3Cm65lBTn4yoVPS4l2XHnqFs3x1xNm+aspBAGtOzbl2a6EFpwqFQ0MKSwPamgkGIQ4qiXM2YL1IjGOERiOkc5UB+R9echGuN5yoEw3HQI5Ru6oHfvu2iMCV0AInL+RBhTIN222cy7b7lMHepakatCFKZiH+62WyFkoClyEei4XuzZYYNzCoNecnJiWqBGOnSItfHdLS5eLpWOhyHF6NHQnD+D1J+ikXY4BrrpY4DRo6E7fxRpW7oj9cwMaMaPEV23DwFYYbOhX/nfP928iaXqAjA4yitngx+M1+qj0GiEITaWd84QG8uLMeHqvBSu3AvEDI88CfviScZVX8W69eY1y3WPOTaqP+6rtQ9/PP+Q3T2mNNdpc9OrcXtyjTvvpopQU39SFRTkcPr06VAAqFev3g2pMo0aNboBABcvXgwVnhs/fvyZWrVqlR08eNBrpURpaWmtgICAMldlateuXVZYWKgBgDfeeONUZGTkdamyu3btatSoUaNrrupr0KDBrffee+8vT/rp5+dXlp+fzwv4WVZWpg4JCSkrKSlRDR48eOjw4cP3jxgxQnkbKNxRKEoJBd9T3cEXpfDmy7My8635wgrDm6hsvnZJEZMoVCoaT+DiRTrOefOc55CzE22HHb/JBKxbJ92mSkW//tnxSqUUVatpFEAx4uKok76cCIEsbJwGrpKCXd/Ca1irB65teWIiDQ4gRGwOxSAE+P13wGik9/zgQft1uQhEBpraXRD2kVaIajgXWdfUyND1RO6Ut+zVaGB1pE0tphYtOl0Q0hY1RipWQCPIKMEbf1oab160yIcBi6BvUgtZaIhITLe7RRiwyJEFxdWz4yInpgVqDMKr6IWZ9nq3YDnUgj7y4mEIEUp04eHQ9I+CtjM/c4n22X7Q6HX2v4VrSg3gSdBgSj+oVNA2aoRcawGAngDeB8Cmm2WguZWH7X362F02nkpLc7hq9OmDq8eO2WNMCM/viIpyytohBXdoUq9euTESvMm46ovMD968ZnnuMefOObnHiLm/SOHNq1jqGta7yZcWEjX1J1VBQS6FhYX+AODv7y+ZkzsgIMACAMXFxf7Ccw0aNLh1//33n7ly5UqDPXv2eJbrt5zatWvfunnzZi1XZUpKSpyyf4hx9OjR4Pj4+CdjY2N/96YvrtDr9RcTEhLaWywWYrPZsGjRotZBQUFFoaGhZUOHDn2kYcOGNz7++OPDvm5XQaG6UZQSCr6lpgRfFMNbJUBl5VvzlRWGp1HZpOZh2TLP2uW2LyZR7NlDBfBHHqG73vPm8efQ1fjdWQ6wwjF3XXHv06FDjrbErChcRQcE5FsucNe32DXcVJVz50qvHXYOhZYVvXrx53XlSjqn3OiH5XOvRT51Qahvo8oBZhqyckAtCH57Gtq40bx50MAKrfomb71pm4dCo3LhQqJWA5GRTvOpU+cj+ZPOvGPJWI27kE/dScrTsmL0aJjNRSgstMB85LRDmm7dGmYSynf1UKuBIUOQi0BkohHKoIYfrFiALYjDMFgFLimxz++m8TCEVESiY9cUJ+2FGkAAgIE2G04kJqJPn2EAygC8A6A3gH8AEJSQIFiLi0H8/NB3/Xrc1bs3+q5fD+LnB2txMQJ1OtSPiLAL0Xf17m0XsutHRMA/zP13t3Bo3CQv3rx6pR5JdxlXfRG315vXrDfuL2J48yquTCM6LjX5J1VBoSrp16/fKQBYs2YNz1qiPEPGeHfXN2vW7PqpU6cauCpz7ty5hq7O22w2xMfHd4yMjHz58ccfP/b222//LafvnrB8+fJdf/75Z7NGjRpNDg0Nnfr555/3/uSTT7a+++67bY4dO6bfsWPHtyo5mxgKCrcZyqpW8C01KfiikIp8RVZGvjVPtwd9Yb9rMgE5OeK78osXe183K1GkpAAbNgDt2/OFfpuNmuezwR0B1+OXYzkQF+csZHKFdfZ+eRodEKBR6+TCrm93fZ41y/X8DhjgrJT4/Xf39uAcaU538Hskv8sXyOwWBO7WG5sphPv8qlSOPnFTgArqMc6Yj9hXj/DafQEv4km8Rt1Jej4BhIfDaCxE797b0LrpGvTushnGvs8CzZvDuOFHRDaYX+5moqJ1z5sHfP01tMjHXixCS+SgDGoMxSswggrsTXAdBiTQIJXGIkRF7YDZXOTohC8kuvBwybQXYU2aIDl5Ewj5EkAogHQAnUDIJ9A1yINfnTpgysqwZ8QIXNq3D3tGjABTVkaPl5aiX2oqBqel8WJMDE5LQ7/UVLcpLcWGJpbkxZNXr9QSEQvxwn11ir2aXL2upM55+pr11v1FiDeWGpVpRMelJv+kKijIJSgoqBSgLhRSZYqKijQAUKdOnVKx83ffffcNADCbzbw4DnPnzj2enZ29wl0f4uLijv/8888d586dey83aCRAM2S8+uqrXc6dO9dE6vo9e/aEtWnT5oUtW7Z0Xrt27fqVK1f63EoCADp16lRw9OjRzXl5eUvy8/MXZWZmrgkMDCxbtmzZo5s2bUrZvn27Vq/XvxQSEjK1Xr16k3v06DHk9OnTdSqjLwoKVYmilFDwLVW1feQNVfUV6QlytweldnuFX/euJAG2jpgY8YCKNlvFvnR37qRxFGJigO7dxes/cIB/TCpIJMC/V1zhWFinlJDJnQuh0mTAANdjKRTZcZdCpXIoW6TSmQKuJQmTiQaWFJM+vv0WuHLFdR/Cw4EzZ2Ds/hhiJ/LjG9gzagDS603MXYWNf8G6inDLc+oxz5qHqDklyDLfopksHjsBPXJwFg1hwL3UneT5w9i37xKionbg7NkCXM234izrZmJriagZl5GVA/x5Vxfkfrmd1t25M8y2IFighg7XsQ6reeNqgus4gPnog0xqIaILQEREfYSFcSx/fSHRsVYw8+fz3YNsNqBHDzT76QusXPk8VKoTAPoDKAbDvI7XZ49E502bxLNv7N2LAK0Wao3Gyc2APe4OOcY83rx6xZaIq1en2KvJlXGKr1wRisxmh/tLixZeu7+4GndlXOMpNfknVUFBLnfffXceAOTl5UkGhrxy5UpdANBqtXli57dv334vADzxxBP/etOH9u3bFyYnJ2/YvHlzx9atW08IDg6ODw4Ojg8JCZnau3fvEVevXg3s16/fUeF1FouFxMTEPDxkyJDYJ5988sTp06e/4KY0rWyys7P9R44cOeytt976tlevXtfj4uKefeedd3bl5eUtys7O/kir1ea98sorfaqqPwoKlYUs3ykFBdmwX6/jx9OP/5og+HMZPZoKpKdP83ftqxN2N18Kqd3e69cdwQFVKuDZZ4GvvnL8nZgoLXSKKSUq8qXrKv2lO9jxJyU56mD7f+6c414BQGoqtZDgwgqZbBrOzEzgyBH+3CQm0rLcPo4bB7z1Fv+61q3p34c9cNeMi+PfP1dZPsTmd+FCYPp06frff5/+lxDqviEm+ZhMMI+NRxQTb4+7kKxai9jwt2lGjagdSEsbTINAiq03qZgON29Kr8/yY2F9H0UExgAADFgE3U/5MGz/BVEv/wu9Pgxnsi3IyipAZOR2AIBeWwvrzXMxAmPsMSgAIAClYC7louxsMfD8EzBmFyMK0xGBbCxCKmLxIq/5Wijvr0oFXeI8pD0+BGFh/tBoOIoDVqLjjs2TdS5ck7NmAXPmOJ6f8mdx9LkBGHA+HP/++yP27/8Mc+ZMx65du9A9PR1zJk2C+r337FV6414ghtjQWOHVZqvYq1fslou9OsVeTePGOf6f/e/48Q49oNirbMAAz/vpHxaG+hERAIB+P/yAhvfcg0EGA3ZERcl2f5Ez7sq4xtP6a/JPqoKCHB555JFLAFBUVFRn3759oWIZOM6ePdsEADp27Cgq8B86dOhef3//0jFjxpz1th9PPfXU5aeeemqz1Plhw4b14f59+fJlTf/+/Z9Vq9W248ePL9fpdCXetu0NNpsNgwYNGvzwww//FRcXdzojIyPIz8+vbOTIkRcAmsp0woQJx8eOHTu4KvuloFAZKJYSCr6nKraPKkJluGL4Gu4uv9RurzBbQWqqtJm61LYq1/rAZqPWDt4gZ9uWEKBnT/FzUooXgO+GIWZGzwqZ3C3YadOc6+I63AP0S1+nA0aN4m/dJiTQGBhyUKsdbirsGMQQSwMK0LZcKSS4MIzjnpavD0uWkborZGYijClABLKhQy52Yil62zJhWNAYen2wswWBEG+3YzMzoWFuOYJm4jpgtUIXfAtph2Pw3c9PY926KN4lyZ92Rk+VEckCy4dQFMGIMAx48wr2bT2OqOcPIwsNcQzN0A9xdmVLGhZAjxycRxiiMBXm5RuA0aOh1QbwFRKA99ZRJhO1qhGuyblzJX0kwsOBvn1VePPN13D06FF07doVeXl5mPDee1gJgM3btuf//o/nXlBkNnucvlJqaImJwPnzlffqFb46pXRZUsYpvnRFUGs0DveXZs0AeOb+cjtR039SFRTc0blz53ydTncRAD799NN2wvOrV6/W3bhxI8TPz886fvz4TOH5rVu33nX9+vXQdu3anQ4KCpKIxOya+Pj4jklJSS41wqWlpX4ajcZe/3PPPfdow4YN848cObK5qhUSAPDiiy/2LisrU3/55Ze/AkBBQYFfrVq1eBlEgoKCym7duuUygKeCwu2AV0oJQkgjQkh3QkgMIeQliX/Dy8s0Elw7gBDiJmebwm3P7SD4e0NV5GUT2jcfPiweqNGdEoD7te8qgh0LV+j1FHfxFNhdfqn1IFdakRIyAdeWGlaruHUIwwBr1/IFT66yxxVCAVdCMWOZOBGpEydi9K5d6NChA+rUqQOVSoU6tWujw7RpGA0gFYAssdRqBT74ANDpYOnbH9F3z0dkh/UwBoRDo2KwCKkgAKYiGhaVBrre9yMtbTBSU/s5C+xcvBXey++7BlZ+lo1WraDVBuDSpWLExhp4l8TG/4UD0z93snzwgw065OIcGiByyEF7ms+ffxuCDnf727N59MYZmu0DOYjARYT1k1B0sXgq0XHdnMQkbkJggZoG8OSM12wugsVCv2Xvvfde7NqyBc/WqwcVgMMA5oeF4aS/PwrPn8f2Bx9EkdmMQqMR2yIjsTs62ivFhJSrRWW9eq0WC88tgt5+/nMl5mXF6rd87YpQEfeX24079SdV4b/D+PHjfwOAr776KnLLli32B/f06dN1Zs+e/QQAPProo4eaNWvmFFNi48aN9wHAwIEDT3nb/tWrVwN2797dwlUZk8lUv1WrVtcBwGAw1D927Fir1NTUndURWHL58uUtf/jhh07bt2/f6ufnxwBAYGBgWVlZGe/HvLCw0ElRoaBwO+LRU0YI0RNCUgCYARwAsBHAKol/G8rLmAkhBwghnQghnwD4DkAn3w1BQaGKqIq8bGIWA7Nm8f3Z2SCA7n4k2VgHgLjQKZYq09ttS2H9YpKJK+RKK+npwI0bwDff8CUxd5YanvRHjkKCk03CjmAMtwAsAKD76CMMW7oUX2zejOPHj6OkpAQMw6CktBTHAXwBYBgAXXl5yXxp7DhWrAAYpjwFaBNk5QBRw37HvmkrMACTcR5hyEBT5C74lKa5FLMgEMOb7VgXygyzmQaeZJULaWlPQa8PRlZWAR5KALV8qFdmt3wwIgxlgp+k5Ml10co/H6lZMx2WGAB0uI401SKkft7JkcLTXT/lSHTu3JDUalg+pAE5IzEdRlUDYMUKGG2hiIzchujo3XbFRNBdd2Hsgw/ivSZN0Pruu3E5NxdLS0uxAcCNnBxc2rfPHhPhWkYGrv/9t9cWE1UhrFotFuyOjsa2yEi7pUeozYjR9WdBReiYhRl5WebNk445q7giKCj8N3jjjTdOPfroo79bLBbN8OHDx7Rt2/b/OnfuPKxdu3YTzWZzo5YtW15Yt27dHrFr9+3bd59arba+/PLLTlYUchk+fHjmTz/91Ombb75pbBO84y0WC/nf//53/9mzZ7UjRow4DwB79+7VtmnT5mz9+vWrXOA/fPhwyOzZswcnJiamtmjRwm6h0aZNm5ulpaWar7/++i6Aund88cUXbfR6fZXFuFBQqCxkx5QghAQB+BVAKYAXAewHkM0wTLFE+QAAzQD0APA/0M2iUgAxDMPsq2C/FRSqFin3Am+coV0hZTHQpQs/vkJ4OFC/vsPRWIz58/l9EzqFAzTjhrf+9sI4DGz9Bw4Aw4bxyzIMnT+p+ZLjOD1qFLVqYBk5Elizhv6/uxgQYlYS3qJSAUOHOo+DHcO4cfjbZsMLAP7woNrLAGYA2AxgHYA2wgICxYoW+TBgEaIwFVnGhoicDwANoW9SC4avh0HbvbVHw7KPwdP1LBGnJSzMHxER9QEABsMg6HRBMBgGoU+fHSguLkOdOmoYNnaFrudrMDCL8CCm4Sr4WU9iJx6FgSyBjrkFrUBdo920grrzuEK4Rt0hIxVtrqYeMnRamu0jfAmS7+uH2HLlCwDk5pZCqw2wuxc8mJuLuLp1MWvWLHz00Uf4BcDJ4mKcj46GHkCwXo++69dj17PPon5ERI11PSjNzcW1jAx7IMmo5GQYYmPR5WoW2ut+Q6vF25FvDUNMjPO1Xbo4/r8mhvVRUFCoGnbu3PnjO++8c+HLL7/seubMmWY2m00dFhZ2rX///mmfffbZQTHXjAMHDoRevHix8f3333+madOmTlYUs2bNap+cnNzTXQaOgQMH5rzxxhvfT5o0aVBsbGxdhmHsP6pqtdrarFmzy+vXr9/QqFGjWwBw9erVOunp6W2Dg4Mlf0zVarV17969qzp27Fjgri9BQUGlwcHBoplFRMYU+corr/z89NNPX+Ye9/PzY+bOnfvNa6+99vSoUaMCAaBFixYXN27cuF1OvQoKNRnCyPxYJ4TMATARwL0Mw2TLboCQ2gC2AHgcwBcMw4zxpqP/VQghIQBu3LhxAyEhIdXal+LiYtSp8x/NOmQwUAsJseN9+viuHZOJWmEIFQXnzol/vZtM9Os+PZ1aVFitVGieN4/GVXBHUpKzIoC7Qy4l1IkFpWSvMxjA9O2LPADFALQA7L/8YvPFbQOg4wkMpBkw2HbT04Fu3Zz7f+gQoNU6z5mnyHGHYXnjDaBfP3FBNykJ+8eOxWMMwzozeEUIgB8A9AKoRUvPnlSxIiLx7cPd9mCRAJCW9hR6977LUcBTwdxTXNRvsVjtQjqL2VyE4GA/FBSU0eOzZ8M85xP0wEwYEYYWuIj1WI9YvMiLI6HlzqirZ4LF1Rp1NRZ3a0mthnHfSRrzolwRAQB6fbBd+SLF7t27ETt8OMy5uSAAHgPw4Ucf4eTSpSjIykJQy5Z49Ouv0aBjR3t3ThzMRZsHgtFcX/2KikKj0W7dwRKs12OQwYAgnc7j15ev+E//Nil4xZ2yZvLz81G3bl0AqMswTEV+dpwghDTp0qXL3NWrV+dERETISkl14MCB0F69ek1q1arV+czMzDW+6MeYMWN6JCUlDXj11Ve/++STTzyIQq2goHC7MHDgwLaeuG88BGCLJwqJcr4E0A3APgC9PbxWQaFmUFV52Ty1b2Ztt6dNc5jenz8vTyEBuDbZd5WGVCzkfno6/bt1a3F3Ca47iVQbO3cCZ84APXrw292xQ7z/330nL8imO7Zto4ENXbl5EEJ35ufNE3fhMZnwtwuFxEMAlgD4BcDx8v8uKT8uJB9UYP0boAqJ6GigVy+n/hlRzyk2Q2zMj44UoJXtcsStX6ejmUQ4aDRqnkICALTaAAQFaejxpCRg3jyE4SY64gL0yMFOLBPEjchGGG46nj85Nv9Slk2cIKGisVOEz5+Yi5TVCl1xNpKTBQE8k6NcKiQAoMc99+C9oCB0A8AA+B7A4IkT8U+5QqJuq1bY9eyzKDQay6eWwePRYWh5tx9Wrqh+l+EgnQ5Rycm8Y9xsIop7hoKCgq/55Zdf7iOEYNy4cV7Hk1BQUKj5eKKUaAXAmzQ860A3/HYBaOrF9QoK1U9Vfm17G2rdW+dysetcCXVSIfe7d6dCJjtXXAGaEHpMThvcLBnssdq1xft+113SCiNP4kgEBVHBf+VKZ8d4tRqIjwd+/92RcpXt27hxVJlhMuHWyZMYIaKQaAPgIKgSYjKoEqJd+X8nlx8/CGd3jXwALwC4xdq+h4dTl5xyzAihrhuCrBRZ2RZEPfgNzEdOS99DXyCWZnb6dJpRxMPrNbDaM3g0Qx6A8rgRWIBUJEKjBnDwoPxnQsoNatky90oa7vN38KDo2jLWaeocwDPW4FAGiVBkNmNHVBSY8+cxWa/HojFjEAjACOBDACe6d0fe6dMoyMrCmgefw7hxDGw2uoYZqPDKq+pKja8rh0KjEYbYWN4xQ2wsL5uIkilCQUHBV5w+fbpOVlaWTqfTZbdv316WtYaCgsLtiSdKiUYArnraAMMw3zAMcxrANQCBnl6voFBj8OXXtrssHlUZal2sL66yYUhl2mDjRphMdG7eecdxjhDg+nV+O1JtiKVcbC3i0kkI8OST0gojMQWDGCoVsGcPtfTg3uNDhxz3euFC6k4ipoyJiQF0Oix56y0cFVT9OGgwne5uutC9vNzjguN/AFiSmuo4MG0a7YtKhTDcRASyxbNSGA8g7MsVvsu/KIaUhcqMGe4VH2zKTc719gwehNB4IWo1tMiHRsVQFxatVv4zIaWoWrRInpKGff66duUHlVWrYZ7/ud11g6cMyipAVNQOmqJVBP+wMNSPiLDHkNDu2YO3AUQAKAMwb9MmLK9XD6U6Hc4aNXaFBIvVSry+dcKsGYDnqUhZpUpBVhaC9Xo8lZaGYL0exqxSzOsxC5lHHK7Pvnx9VUXCo9sRZV4U/gu0atWq2Gq1vn/u3LlV1d0XBQWFysXTHDcViRbnw0hz3kEICSWELCCEnCCEmAkhl8r//U0IWU4IaSyjjs6EkO2EkCzO9dmEkEOEkDGEEFEpiBByDyHkFCHkXt+PTKHK8MXXtjuT+qr82pTqi5hQp1IBV67Q/09MFFdM2Gx0N9pkAt57j3982jR+O1JtCC0c1GrqwrBqlaO8SsVPMSqmMOIeKxfknSCE9u1//6MxK0aN4guk7L02mYBTpyStLywMg8W//8471gY0mI5cr+U65eWFFhNLliyBhSs8xscD589DY9iN1E6HnbNSYAFSsQKaZYsr1+VIyk3HZnOt+GDX3NSpzudUKuCXX2gA03Pn6FgBan3hifuJVLYZMYWXq74mJAAzZzriUsybh7DXX0TE3XXElUF310FYmL9oVWzgy/5ffYU9I0agICsLzfR6bN+6FS+FhUEDYN8ff2D21au4gD9BVRWc6728dWJZM7xJRcpVqgwyGHBX7964Nv4QZuE8PjR/ifu6NapU76DKSnh0O6LMi4KCgoLCnUbVJ96tJsqVBT8DuAmgD4AmDMPcxTDMXQB6AjgFYF951hCpOjoDSAXwOYD7Odc3A7W0fhLAfJHr2gDYCSAU8mUUhZqArxUErtwigKr92nTVF7EUn2ygxebN6bGDB8XrXbIE2L9fOuMF247ZDMTF8QVbhgFiY8XdZEaPpvEy2LgZQksVMYURe6xckEdKCv136BCwfLlzH9eudcTGYElKovESJkyQHNM20OwZXL6A5w97HQDCO37p0iVs27aNfzA8HGjVCpo/j/ADQIJm5dDASuc5Lq7CLkcWi9Vp999sLoKlkZbnTmLHlfTsKuWmWk3XHDdVAzc7jKfuJ0JF1aRJrpU0wmd94UKqSOO2P3MmNFfMSI0PEVcGRexzmX5VrdGgXps2POG+5dNPY9kff2Bes2a4r25dFBQVIRXXoUMrEFwq7ybjtbeYMGuGMBVpaW6urHpYpcrgtDR7UMuJs8LAQF0+PcSj2+Pu1eruVflfRZkXhZpM06ZNS6Kjo38ZPHjwserui4KCwu2FJ0oJCwDxLSB5+JfXUV08A+AcwzDvMQyTy3DSjjAMc4NhmGWgccfGu6jjPQCTGIb5nmEYe1ofhmFsDMP8A+D/AERzLS7KLSN+APAyqOJD4XahMhQE+/dLm9TL/dr0laLElYsG4BDq2ACQ7CPD9mvvXvF6rVZa3lVMB6uVBrNMSOAL+gwDrF9P04qmpAAbNtD8gSxS8S/kzEd4OI0bER1NrSCKxM3ssY+TsZi9J2LKCI6A+6Pg1ENw77IhRQ8ADwqO/fijsAW4D/CpVlNB/MABKtwfOOCxy5HFYkV09G5ERm6zx0swGgsRGbkN0dG7YZkUx7dCcaf4kOizZeESmH8/xeuf+eBJWAQuDB67n3DXi6u4MMJnfeFC6oYipLx9TZt7oFXx3Zu1yKfWKW7WoVC4B2gAyRe2b8fsevUwGIAagBHnEaTS4Wm0w9KmkXjuce/S0AdotRhkMCBYr0dBVha2R0baXTAGGQwI0Gpl16XWaOzl3b0+XCHn1VqR+u9klHlRqMnodLqSlJSUvQkJCcequy8KCgq3F54oJc6CWgR4S1MA5ypwfUVpB8Dgpszu8nJe1cEwzE0ARwBwXTRsAJ5nGGanzH4q1AQqYzsqKQkYPtz5OLtbK+dr01NFiSuBXU5GkfBwoEED8X6JCW1sHT17AkuXulZMSAnUVitVSAwf7rDMkBqnJ/MhnIsHhaJ/Ob17O8qKKZFYOFYewhxlz0j3QhZDBH8fOXLEuZBUbA+WuXNpNpMePWhfe/TwbH4A5OaWIiPjmj1ewr59lxAVtQNZWQXIOJaD3O176H1iLVjcxVoRcfmwwA/RP7VA5LB0vuJj6mVEYzws4FgeVNT9RMzNR+xZnzlTWhHVqhV9LuLinM+7c11hh8ER7lnqtWmDhu3bI0avxy/ffYc299yDAtstfIMMfAcTLBrvU4K6y5rhDd4mJJLzajWZgJycqkl4dLtRVYmgFBQUFBQUqhJPlBKnUbGUng+W11FdhANwt9V0EYCrr7S6DMO4i/7Lq4NhmEyGYfa5KK9QE/H1dpTUjjt3t1ZKyGTdCTxVlLgT2OVmFJGK/SAltLF1vPACdZPYvFm8f1KoVPLM9tPTxTN1iM2H2Fx07UoDKnIZORI4ftxR9rnnxBUrhNDrt28HCMG/gtMPeDZiJzoJ/v7333+dlQbh4TQIoxQzZ1ZsfkDTdxoMg6DXByMrqwCRkdtpgMeGgOHCZGijH3WkcvUy1kouCULGP4V2xceBA+WKD2MRMhp2QK4qhBb0VcYbobWNVDYZsWdx/nzHdZMmicc/8VI65FpQ9DabcSQzE3EACIAfjUZ07tYNaWlpXtUtJ2uGp3ibkMjdq5VdijEx9BXjSSbY/wJK2lUFBQUFhTsRT5QSSwB0JYTMIITIvo4QoiKEzALQGcBSD/vnS9QArG7KlAHwq2A7FaqDEOJPCAlh/wEIrmB/FLzB19tRUqb2Gzc6dpYFKR/tzJolnYpTSlEiV4EhJ6OI2Ffw/PniioqDB6m7hcEAZGcDTZpQSwtP6NdPnsVIjx7igQtTU523XceM4c/F2LHAt99SJcSOHTQOxqFDwAcfOM+blCtKTAwweDAQG4tSwal6no3YCeH1JSUl4gombvwFITabvMCOUmslPR0wGKBT5SE5OYp3SfLVhdAxufzycqyIRGKNaJk8GBY0tis+HnnkO6r40AfDcPh5aM8fr9z8klLP+vz5jjWvUgELFjgCbwL0ueBmePGBdKjWaBBgtQLjxqE2w2ARgD2gWu6srCw89NBDmDlzJkpLhStOGqmsGWyMCWFWDk/wJiGRq1erWJZZgBpOKelFHShpVxUUFBQU7jRkC88Mw+whhCwEMAfAGELI76CWB8USl9QB0ARANwB6AIsZhvm5gv39LzALwDvCg8XFxahVq1Y1dIffh/8MYWHAJ58Ar73m2DX9+GN63Jt5CA/nx2UAaJ0dO/Lri4hwvtZqBf76C9Drxeto2tS5TxkZ4oL9X3/RMQjHyh6TGtvzzwMPPQRkZdF+hIcDgYH8+fnkE+DwYeDVV8EwDIoBlMyZg+JnnwUR9tsVP/3kepwmE1UqSNUXF0czO3z6Kc2m8e67zmUYBhg0iP4/IbRsRATN/CC2a75+PZCbSxVDn37Kj6+xbh38NRqUcLIYXJc3UkmE19dmGBRz2xw3jt6PAwc8q5idx8xM4MwZ4O676X/F1kq3bgCAC6iPEZppAILsp0cw/4edWIZmyHOUF1tbXNasocFCRfrU8IEWWLmyFR555DuwoYdWruyBhg3VKIaM9VkRpJ71UaOo0om75oXtiz0XcvpoMjnmX6jEEDy73QH8DmBa//5Yv2sX5s+fj++//x5JSUmIEHtfCLAFBCDw/vthsdnQ74cfENSsGfr98AO+HzAAgfffD1tAQIXe7XJeH8LyUq9WqccvJMT1q/c/9dtUjqfzrsDnTlkzd8o4FBQUFAgjV1BgLyCkPYBxoIqG5gCkslUUATCCxpFYwTDMMa976QMIIWsAfMMwzDflf7MBKAcyDPNv+bGOAJYyDNNHoo48hmFCOX/PBNCLYZinOMeWAjjGMMwakev3Apjsai4IIf7gBxQNBmC6ceMGQkJC3I6zMikuLkadOv+x5CEmE91ZZv3IWYuF1q093xFNSqI7ylarY1dVuMVlMtGdcO6XuVpNt8PYgHzu6pBTj6dIjZs7P4C9TQZAHoBiQqA9fx7kp59cKxKEjB9PU4CKjdNgoBYD7lCrqdDevbv7dtm54YyBd27uXEdqSBE6NG+O4+fP2/9eAmCy+x5KshTAFG79AI5x/rZAjdwVX0L7yvP2PpkRgjDcpJk3WNgtaZvNMY+AYztapaLjmjdPdGxmhCAS05GFhtAjB8lYjVi8aP87DQto9g93a0tsPbKMHAnj+5/YY1VQpYSGWkoYBkGnC3K+pjIQPuuVRVISf/4TE/nPsItnd2t6OsaNG4erV69Co9Hggw8+QFxcHNSstYYEVosFpbm5vDgWRWYz/MPCoK5ArIqKtCk23d6+tv6Tv00KFeJOWTP5+fmoW7cuQN2L892V9wRCSJMuXbrMXb16dU5ERIQ712UFBQUFrxk4cGBbj1OCMgxznGGY1xiGeZxhmLYMw7SU+NeWYZjHGIZ5pboVEmIwDPMPwzB6ViHhZR3zuAoJH/WrlGGYfPYfgAJf1q/AQU7WBq7/eUWzcXjjKqFSUYGR/SKXa7frS8djV+Pmzo+YewnDeB+HQ2qc7gI8slitztk9XJU9fVp83ubNc6mQACHowlFIAMBW9y265GvB3505/2+BGtEYj8jZeTDa6gIAjKiHSExHNMbBQmo5+p6Y6EiFumED0L69s6vGnDmSYwvDTUQgG3rkwIBF6I0zMGAR9MhBBC4iDDflrS0XmULM67Yj6sFv7C4bP//8hN2VIypqh1M60kpDLLOLr5HjVuXi2X3mmWeQkZGBQYMGwWKxYPr06YiKisLZs2ddNisWWDNAq61UhcTu6Ghsi4y0x60oNBqxLTISu6OjYbVYJDP4KvESFBQUFBQU/nt4rJS4jZET68GvvFxF8EUd/z18leZSLnIUDNw++SobhxzBZ/RoujNPCG1nxgxpRYAYbL8HDBDPNCBnntly6enyxy2mLCCEunlIpdWUYuVK+l+xcYaHA88+K6+e1FR5Cgy1mvZTbN46d5ZWSJTXPVBw+FdQk3tvOAjgN8GxgS+/bJfUclUhyAi6F1lXCaIwFftwN6IwFVloiAw0Re6cZXwn/J07HZlMevRwnUZUEDtDAytSkYg0LICu3KlEh+tIwwKkruwCzeKF8lKNHhbmJ3EQZstHRDixW0b07HmXPbhmRER9hIVVJBN1DUNuXBgXysfGjRtj27ZtSEpKQlBQEH777Te0b98eSUlJ8NTysbIozc3FtYwMe9yKS/v22eNaXMvIQGluruS1SrwEBQUFltOnT9fp27fvky+//HK36u6LgoJC5fJfUkqYANzlpkwTUJcTKfIIIe5sid3VoSCkohYIniJHwcDtk05HYxRUVXJ4k4mfktATBYhwLrlZEeTOM7dc9+7yx81mg2CVACoVsHAhUFjoWhAWw2aTjpdgMgFffSWvHoahMSZcmber1cCIEVRgF5s3KcuMt9+mzvEMg8EAGgtOvwTpgDtSFAMQymB3NWqEwcuW2SU17cGdMNx8H3rkIAsNee4VBiyGdtYEqoTYuVN8rbuCYUQVE1rwrYK1vSKgGT9GfqrRmTMlT2vUQOq6B5GWNtjuqqHTBSEtbTBSU/tBo3HcO4vF6mQ5YTYXwWJxF8O4huBJAF0XykdCCF566SUcP34cDz74IAoLCzFmzBgMHjwYly9f5pWtan0vQK0wBhkM9oCa2yMj7YE2H9jwK34/pZVtoKagoHD7cODAgVBCyDutW7ceJTy3e/fusPHjx3fr3bv301qt9hW1Wv02IeSd55577iGp+lq1alV87NixVmvXru1bVFT0X5JZFBT+c/yXHvATAB5xU+aR8nJe1UEICQS1tP7H4979V3GlIKisr2l3u5ViIeBTUpzrqazk8N6mI3U3l3IsHqTC33ORGndSksPNgRBg8mSq0AkKkmetIGT4cHFhd/9++UoOtZqmbjx3jmZO4CpMZs+m6+vAAWDdOum5YW3KhRk43n/fHrhRAyBO0PTfAIZCvmKiuLz834LjU3JyoFm3ziGpFRZCx+QiGat55ZKxBjpc449Baq68uR8AMGUKzVZy8KB8qyEXrhusfb5Gr4NWyw9PpNUGOCkkoqN3IzJyG4y/ZwIGA4y/ZyIychuio3dXvWKCa03EfU+5em/52D+hZcuWMBgMWLBgATQaDXbs2IF27drhm2++AVD1+l4uQTodopKTecfMw35Em15Nq6U/1UF1KIQUFGoqCQkJXRMTEx/bv39/h0uXLjWy2Wwiaa2c6dq166mSkhL/lStXtqzsPiooKFQf/yWlxDcAwgkh7xFCwghxSBjl6TdfB/AEgEQXdbwNYCkh5InygJTs9SpCSCsA6wFsYRjmsmQNCnykBPBlyyrva9rdbqUrIYpbvrKcnT1NR8p++YoJoKwyQ66iQ2rsbH+kxi2mzFi8GBg2jO6kv/CCa2sFsZSbUhYsw4dL1yPsM9vX8HBqtXH+PJ2r8+dp+s9yId/t3AwYIN5HDlMAPCA49j2ALnDvynGwvNz3guMPAJjCMPx5aN0aRhKGWLzIKxuLUTByk4larbTPYmvp4EE6DwsXOp8XsZaw89RT1M3FE6WZ2HpWqVzneRSR5nJPnEVG+kUaa6JHCvb1HYuoHinIyipAxrEc5G7fUz3uX926Od5To0a5f2/52D9BrVZj2rRpSE9PR/v27ZGTk4NnnnkGw4a9iLFj8yvsceYthUYjDLGx9r+voyni5+mrrT9VTXUqhBQUaiL33XfflSeeeGL/G2+88fVPP/30ac+ePY/Lue6ZZ545BQDbtm27r6J9+PLLL5u2adNmRGho6JTg4OB49l/9+vUn9ejRY8ihQ4fqcsvPmjWrfdOmTV8OCQmZypYNCQmZ2rhx41dfeumlniUlJW7lqIMHD9Zt06bNiLp168aFhIRMbd68+ZiNGzc2FZaz2Wzo06fPoPfff79NRcepoHA78p9RSjAMYwXQDzRV6S8ALhJCLhFCLgE4BCACQCTDMDcBgBDShxBymhASwqnjKIAhAMYDOMm53gRgI2g2j+kuunEdNCuJAouUAL5oUcXjN0jhbrfSXSDFJUsq19nZk91U7pfv8OHOwiSrzJCr6JAqxwqxUuN2pchhGJpS88ABWseCBfx+qlT0mBhiFixC6w2VCoiO5s9XfDxVPAj7KmYXLmduZCiqagFYB0CYI+dvAD0APASaVeMXAMfL/7u0/HhPOFtI1C2vrxbAmwezuj6iGsxxZMBQJUAfUoosNEQUpsLM9kCtBnr2FF9LXbvSeRg+HHj9defBuLKQ8VRpJraeExPpPRNb02vWOEtzSUnQdrsXBvNUcbcV4yRoox+tHvcvFpsNWLtW3nurEvwT2rdvj0OHDmHGjBkghCA1dQ0Ypj2AvfYyleVxJqTIbLbHkAjW6/FUWhoKtA+DAV8x6a4/t6ulgRzDtNt1bAoK3rJ06dI/vv32210ffvjhif79+18lhMgKgvPSSy+dr1OnTvGRI0futXnqCsrhyJEjIa+++uqwl19++cCVK1eWFhQUJLD/TCbTxw8//PCZp59++nnWTSQxMbHF6tWrI9etW5ean5+/iC2bn5+/aM+ePWsOHz7cYtKkSV3ctfv666/3j4qKOnX9+vXF+fn5i958881dkydPflqkXJeLFy/Wnz59+imvB6mgcBvzn1FKAADDMDcYhpnOMEwEwzBahmHuKv93H8Mw4xmGucQpu5dhmFbCFEsMwxxlGOap8swd7PVNGIbpyjBMYrnyQ6r9ZyqS7eOORExgmTLFWSjy9de0q91Ktk9iigm1Ghg6tPKdneXspkq5WogpM+QqOqTKsUKs1LjdKXKsVuDmTVrHtGmA0Uh3ylNSqPKgc2fx61Qq9xYsmzY5dt3Z+Vq4UP49kjM3rVu7tZQAgDYqFX6As2ICoMErpwDoA5ris0/538KglgBVSHwPwL5dwpmHsDB/RPRsDr0uAIZxhejNnIYh/x1+Rgxu1haptcQqtJYtEx/M+PEVW0tc5FoHmEzAq686S3NjxwI2G3S4LuK2strZbaUyJT05llQsVaUFKMff3x/z5s3Dr7/+Cp2uJYDzAPoCmAqgpNI8zpz6ERaG+hERCNbrMchgwF29e6POi58A4L/XXfXndrY0cGeYdjuPTUGhqtFoNEynTp3+zc/PDxazMJDLRx991O7RRx89OnHixDMajYb3MgoICLDNnz//z0aNGl1bu3ZtcwD49ttvW0VHR//et29fp8i8bdu2vbl48eKffvzxx/bu2j1//vxdEyZMOKkq/0YaO3bs+eLi4trXrl2zB99fv359+KZNm3pv3bp1S+3atb3XvCgo3Mb8p5QSCjUUocAyaZJnO7He4mq3cvRoKizHx1dffjp3u6lSKTg3bhQX/uQKht6Yl7tS5LAEBvLLR0c7dsulhP758x3jF4tNwVoDsHV6u/vsbszh4TTYqSuWLwfOn0evVatwQKVycuWQywMA9gPoxZ0PhqGBKwFoNGqkpvZD2tc9oFu1AGAYR0YMJEIDK10X06dT5Qy3Dhap3X4urubE2zXi7v5kZoorJMuPGVFPxG3lRWe3lcpUBMhNSQtUXtwZN0RGRiIj40889NBYUEXAYgBdMHv20Sp5fak1GvRLTcXgtDQE6XQwmYC359UDwH/G584VXw6+SnZUXbgyJrrdx6agUB08/vjjpwAgJSXFaxeOCxcuhN5zzz1XXZXR6XS5//zzTz0A6NGjhykmJiZLqmzHjh3zr1+/XlfqPEtZWZlfcHAwb8PSz8/PWlhY6AcAJ0+eDJw0adKQZcuWfdW2bdub8kajoHDnoSglFGoGXIGlpiSrZ+MQ1NT8dEFB4u4aPXtKC39yBXdvBPzRo6mbh5RFwU0Pf2sJccSPSEpyTmfpybqQYyvtbsxiyjIu991nt0xoc/48Du7ahflvvIHGjYV5OcS5C8B80PgSTg6lgrgSGo0a2vwLvPnQIh8abjZihqGKiWHDnLdl5ez2d+9OFVwVXUueIKacUqkAQmBGiD31qR45SMMCuyuHk9sKVxHgazt54fuJRa0GRo6s/vdWOcHBwfjll0SsXr0D9eo1BvAX5s7tjjlz5qCsrPKzVqs1GgRotQCkl1vXruLXehvrt6bg6ifsdh+bgkJ1MH78+DO1atUqO3jwoNdKidLS0loBAQEuX361a9cuKyws1ADAG2+8cSoyMvK6VNldu3Y1atSo0TV37fr5+ZXl5+f7cY+VlZWpQ0JCykpKSlSDBw8eOnz48P0jRoxQVJMK/2kUpYRCzaQmJauvifnpWCGdu6ssJgR5I5BVRIjr2hV44w3n4+52jMV2yBmGfqmL7eoTQmNUDBjgcAORctj2xlZabA7Cw6nlhhjC8YWHo9Z992F6v34w7t+PlJQUvPTSS+jQpg3qgO4X1wF143iJEKQ88wzOgwakqcUdPxeh5CJ3xz411XlbVkyhBfCPsUqNhAT3bbjCk/UUHg58+qlzP4YORRhuIgLZ5alPF6E3zsDwmgX6hnC4rQifgcqykx8wANiwga67Q4cc76k1a2rOe6ucUaOexD//nMCQIUNw69YtzJ49Gw899BBOV6EU7GkYEk/L10SkfsLuhLEpKFQ1DRo0uHX//fefuXLlSoM9e/aEeVNH7dq1b928ebOWqzIlJSV+rs6zHD16NDg+Pv7J2NhYd3GsodfrLyYkJLS3WCzEZrNh0aJFrYOCgopCQ0PLhg4d+kjDhg1vfPzxx4fljkNB4U5FUUoo1FxqojKgJiAmpKtUVEjnCkHeCGSeXCMmbC5cCMyZwy/HzYIhhdgOOSH0S13KTeWtt2jK0ZgY+k+nswdFtI9Bp7PHIwDgOuUs+3dCgvQcSMW+mDKFPz5OHzStWyP6/HkkJSXh2F9/oWjVKtjUahQBOKZWI2nBAkRHRkIjPTsUEcWH03asHKxWKiWJIRbgcsYM760MvFmD/fo5KyW2bIEGVqQiEWlYAB3o5pXu2Sik/TkCqWdmQGPYzZf+TCbpe18R2DHFxFBLnuPH+e+pGvjeatiwIbZs2YK1a9ciJCQEBw4cQIcOHfD555+DEbvnPsZT47eaYixXUcSWwp0yNgWFqqZfv36nAGDNmjU8a4nyDBnj3V3frFmz66dOnWrgqsy5c+caujpvs9kQHx/fMTIy8uXHH3/82Ntvvy2MUe3E8uXLd/3555/NGjVqNDk0NHTq559/3vuTTz7Z+u6777Y5duyYfseOHd+q5LoEKijcwShPgYLC7YaYkG6z8d0jvHFc9uQaMWEzIYHurAuFHKGyRC6sYCrl9rFzJ78thqH95wqiDCNucSBMORsdTRUYffvSQJxScyCV3nLSJMffYvM4bZojvgN3C3XuXCr0i8Wr4KbzlJJchNuxUllMuKjV4vPCtinEZpNlW26xWGE2c5ILmUwwj42HhU1Fz86l0KpFyJkz4kooABpYoUW+YxytWkGrDYBGr3OW/pYt833A3Ns4IAAhBLGxsThx4gSioqJQVFSEV155BU888QTMZnOlt++p8ZsvjeVqWqaLmmQIqKBwu3D33XffAACz2cyL4zB37tzj2dnZK9xdHxcXd/znn3/uOHfu3Hu5QSYBIDs72//VV1/tcu7cuSZS1+/ZsyesTZs2L2zZsqXz2rVr169cudKtlQQAdOrUqeDo0aOb8/LyluTn5y/KzMxcExgYWLZs2bJHN23alLJ9+3atXq9/KSQkZGq9evUm9+jRY8jp06fryKlbQeFOQlFKKCjcbnibwtKdQCb3GrEd6LFjqUJCDHexJEwmKqgKBUhWGP7Xg4Q1Npu4sM1FpaIKFG7/t2yRvo47B1LpLbnCsJQD/cyZDqkoPJzer5kzXcd22LYNWLzYtWKHux3LKj/E4jKw/V2xAujVS3wNuXO9kZDuLBYrovtvQWTbNTB+uBwwmWBM+xuRTDyiMQ4WNhWk1UotDFxZTdx9t3u3FHfbyyYTnTch3Gwu3nAHBATQ6XTYvXs3lixZAn9/f/zwww+IiIhAampqpbftqRGJL4xOamqmixpoUKOgUKPZvn37vQDwxBNPeJXFrn379oXJyckbNm/e3LF169YTgoOD44ODg+NDQkKm9u7de8TVq1cD+/Xrd1R4ncViITExMQ8PGTIk9sknnzxx+vTpL4YOHeq1Jjc7O9t/5MiRw956661ve/XqdT0uLu7Zd955Z1deXt6i7Ozsj7Rabd4rr7zSx9v6FRRuVxSlhIJCdVCRrTu5KSw9dVyWe83+/eLxH6SEeqk2TSYqRDdvLm4pwLb94IPSfXaBBWoa/JBjcWBGXVhsHr72hEK5Xk+VBFLbnFKxHoQWB+6CTTIM8NRTQFwcjR8iV5pig4MKYdOmjh4tvYY++IAqNcQsNITSHSfWRO6Il5Hx62lkXfdD1JvXsK9ZH0S9egZZaIgMNEUuAvl9cWVh4C6TCxtPxNX2stTcxsXR/3r77HnxXDlZkAAwm4tgsUhmj650VCoVJk+ejD/++AMPPPAArl27hmHDhmHEiBHIy8urtn75mtvYsEVBQUHAoUOH7vX39y8dM2bMWW/reOqppy4fO3Zsc25u7kcFBQUJBQUFCfn5+YvOnTuXtHnz5l/8/Px4PxyXL1/WdOnSZfi///571/Hjx5cnJCQc8/Pz89rnzWazYdCgQYMffvjhv+Li4k7//fffQX5+fmUjR468oFKpEBAQYJswYcLxzMxMSYsNBYU7FUUpoaBQ1fhi605OCktPHZeF16hU0jn7xBAz/X/zTfHrk5KouwTXYoELt79du9KsBsK2Ro6UFFwtUCMa4xCJ6TBGPgXYbDCiHiIxDdEY69i5d4eUUN6jB3UzkMpKIRYQUyi8yglUySp6PJGmxIKG2mxAw4b8/grX0IAB9P+HD6fpcLlry5VLSno6tKmrYMAiezaMSExH1jU19PVtMKiWOlwuuLiyMHCVyYVh3FvfSMUoady4Ys+e3OeqXOloyTIiOno3IiO3wWgsBAAYjYWIjNyG6Ojd1aqYAIA2bdrgwIEDePPNN6FSqfDll1+iXbt22L17t+w6apprBJc7wLBFQUEBwNatW++6fv16aLt27U4HBQV59eKMj4/vmJSUpHNVprS01E+j0djrf+655x5t2LBh/pEjRzbrdLoSb9rl8uKLL/YuKytTf/nll78CQEFBgV+tWrV4GUGCgoLKbt265TIgp4LCnYiilFBQqEp8uXXnzv7XG8fl0aOBefOosGyzUfcCoeDWq5e4wLdggUNYIwR47z3glVec22DnQMqyYskS5/5+8AHw2Wc0oOTy5YDRSDMdnD9PLQDefptXRS4CkYGmNF3kb12xD3fb00mK7tyLwbUs8DRoYnw8MHQo/9iIEa4j3nFjSIgpK+RKU57s5rNraOdOvrC+cyd/bblySdmxAwCgw3UkYzXvdPLkutCdP0rnUix9rSvLna5dxWNkeJuqgGFo/I6KPnvuniuO8iq3VQdkHDiPrKwCRD34DfZ9/D2iHvwGWVkFyMi4htzcUs/H4WM0Gg3+97//Yd++fWjVqhVMJhP69++PiRMnoqioyOW1NdE1gqskud0yXdRkBY+CQnWycePG+wBg4MCBp7yt4+rVqwG7d+9u4aqMyWSq36pVq+sAYDAY6h87dqxVamrqTl8Eoly+fHnLH374odP27du3stYWgYGBZWVlZbxdksLCQidFhYLCfwFFKaGgUJVU9dadp47LJpO04MZ+MQPAypV8AXrlSiqIs8La+fPA66+Lt+HKbUGtpsK8WCaLCRNo8MJatfiZDqKjqcKA89GgRb7zzj0a2tNJ2nfuVSpg9my+5EIIsGoVrZdtx9OgiSYT8PXX/GPr1ztLG6yAm5ICbNpErQMMBvpfT6QpNi5HSgr9W2o3X0zqEVOUjRvHD0jpyiWlCbUyNaIeYvEi73Ts21kwbviRzuXKlZ6nHIiPp4oJdwE/hWRmwsKoqPsOB7MtiG8l4+2zJ/VcCeZSy+TBkDsb+vpWZBmLEDnRhCxjEfQNAYNhELTaAM/briR69OiBY8eO4ZVyReLHH3+Mzp07Iz093aksu9xqmmuEUEmyc+ftk+miJip4FBR8yZYtW7QtWrQYw/47duxYawD44YcfOnOPHz9+PEh47b59++5Tq9XWl19+OdPb9ocPH575008/dfrmm28a2wTfIBaLhfzvf/+7/+zZs9oRI0acB4C9e/dq27Rpc7Z+/foVVhAcPnw4ZPbs2YMTExNTW7RoYbe4aNOmzc3S0lLN119/fRdA3Tu++OKLNnq9vvKjDyso1DBk5eNVUPjPYzJRYbp164p90bLCHfcHsbK27rzp8/794kqTZcto4ECbjfY/MZEKzmlpQGQk3dUGaDvh4VSAl/JNF5sDQFxikLIsGTDAeUxxcdTKwmoFVCrobHTnPhKOAJzJWG1PJ2lvb/Ro4OWXaZwCAOjZk/7XYKB9BVwHTRSbZ1fKJ2G/d+50jFGloq4fnTtTi5VZs+h1rqSppCSqlGGVJoRQBcC5c7S9Vq0c7ifcdhIT6dilsrnExDjqGj2a9mvaNH45tRooLIQZde2WKHrkIBmrEYsXqaXKjMtIe+Q0tKNH0/vG7ZMcpk0DnnvOo+ssze9GNMYjA01gwCLocB1GEoYoZgoikI1UJEIDq++fPZG51NmuIvnaYkTCMXfJuQnQqR4H4PTtXeVYLFbk5pZCqw1AYGAgPvvsM0RGPor4+Ak4deoUevbsibfeegtvvPEGatWqxVtGQqSWeFUg9ao4d875UahpePKaU1C4Xbl27Zr/+fPnmwqP37hxI+TGjRt2DfLNmzd5ssmBAwdCL1682Pj+++8/07RpUyfzslmzZrVPTk7u6S4Dx8CBA3PeeOON7ydNmjQoNja2LsMwdvM9tVptbdas2eX169dvaNSo0S0AuHr1ap309PS2wcHBraXqVKvV1r17967q2LFjgau2Z82aFfnKK6/8/PTTT1/mHvfz82Pmzp37zWuvvfb0qFGjAgGgRYsWFzdu3LjdVX0KCncipCpylCt4DyEkBMCNGzduICQkxG35yqS4uBh16vwHsxRJCXPukFIKJCXRL06usOnrnHDe9Fko3LKo1c5ZLVQqR3BLkfoZhkFeXh6Ki4uh1WpBhKb73DlQqahCYdIk5y9wg4FuHQoxGOhOtXCshNB627eH8dW3EMVMQRYcacf1yIFhlj90j3aRllCEcxcXxwvqaGf8eCA4GFi0yHkeTCa63SlUPp07x28zPZ3GpxCT8FgFRRcXfTWZaGwOsXvGbUusHbYM4NxXLoRQd5nwcBpDgs0YolbTmCMzZ8JiI4jGOGSgqUMJgHqIwlSqBPgpGpr+UeL1C/DFe8ZsLkJkh/XIyqH3PFm1FrFh8fa/07AAWvVN+uwNGOB4ToGKKR9F7jurDHFah5u6QRfTv0LjrCgWixXR0buRkXENBsMg6HRBMBoLERW1A/fc44egoFRs2UKzcnTt2hULF65D3773ujR0Ei7xqqC4uBgHD9Zx+6qoqch5zSn4ljvleyY/Px9169YFgLoMw4gE7/EeQkiTLl26zF29enVOREREoZxrDhw4ENqrV69JrVq1Op+ZmbnGF/0YM2ZMj6SkpAGvvvrqd5988slhX9SpoKBQsxg4cGBbxX1DQcEV3saAcGWLW9lJ6r3ps1ScB7WaxnEQC5zoTRBGFq7bwsaN4goJwL1TuHCsDAN8/jnME2baBUFWCGVdOaJWhcB8bzdaXo4rw5Il4jE0Vq6kygqxeQgPB154gX9Nv378v5OSgO7dpZUBbEwPV9u7YkEtAb5bglQ73G1tro27EIZxWJFMm8YPgtmlC2CzQQMrUpGINCywW6LocB1pWIBUVRI090tuNFUKWm0ADIefh14XQN13bOUKCX0wDAeHQWvYxlfI9O1LlTs6XcXs5wVzaVbVQ1S9D8TX4fTLTlk55ODLbB65uaXIyLhGY15E7cC+fZcQFbUDWVkF+PffMnz00Rps2LABoaGhSE9Px4ABnWCzfQLAec1Wt2vE7RY/gsvt3HcFhcrml19+uY8QgnHjxnkdT0JBQaHmoyglFBRc4U0MCCkffa5vdmUmqfemz1JxHliFgbsgT9745u/cSTM9xMRIC4Hush1I9DsMNxGB7PIYEovRG2fsMSYicv5E2JpPxZVGUnM3dSo/Kwng2n7dZALWrXMer05H23IX7FNYnxRiWSYAh0Tjqh2u1MMqiSZPFm/n9GmHAoe7djnSlAZWpywbWuRDEzfREc+CjXshpcAymYBffvFJYAKdLgjJG/iKoOTkKOi6t3ZsPwsVWhVRtLFwlI5hmccQEdmSxpBQLaXrULUU+vpWRIQThBVf9ahq1rLBV9k8tNoAGAyDoNcHIyurAJGR25GVVUCVN+UxL5577jmcOHEC/fv3R2lpMYDXAQwAQOdGpeLHhK0uvEk4VFO4nfuuoFCZnD59uk5WVpZOp9Nlt2/fXpa1hoKCwu2JopRQUHCFN1tYUj763btXTfQyb/osdU3PnuJfzO4yKZhMwG+/ARcvirfniTWHK8sSiQCM/J37awA4O/dYAc0b08XblpqHSZMcfdi4UVqZwM6DlJKHYWhbYrE7XNXHIgxUGR5OLTaEsJk+XAUVnTfPORsIG09DyOzZ4hYE7NqQUlqpVHTu2BSwMTH0H6uc4cJaFz32mE8i/RmNhYiNNfCOxcYa7MK8y7kBKhaAtlxxo9HrkJraD2l/jqBZSAwG6ObPQNr1N5C6fyQ0rVt6NE5Xlg3eZvPQ6YKQnMx3rUlOjoJO54h3ER4ejh9//BGffPIJNJo6AHYDaAdCNmDFCoYXE7Y6qWwjtMrkdu67gkJl0apVq2Kr1fr+uXPnVlV3XxQUFCoXRSmhoOAKb7awpDIVsAJpZYen96bP7q4RfjG7yqTACpeDB9MAmGJCl6fWHGKWJWzMjnnzRF0PNLBCqyp0ysqhgchuspQrA3dsbB969RK/v4Q4BH2pNcC2xU3/ycJmAnE3r0LlwIAB9rosUNOME+vWUcuc1q1hRl1+xgmW5s2dj4mlewXkWxAQ4rherabzsX+/c6wShqFKKbYeX6bKBXVnYIV1vT4YaWlP2a0BoqJ2UPcHKSsTFh/Zz2s0akeWjStXgBkzoGXy6Dr0cJxyLBs8xa3yphyVSoVXX30Vx48fRYcOXQHkgWH+D7t2Dce1a9c8btcb5KTMrEwjtMrmdu67goKCgoJCRVCUEgoK7vB0C8vV7nFlpv/kItVnV1/17sbJ/WJ2Vb/QXUDougJU3ImaK6DPnEmFX4OBpo/kCvWJia7jJbAQ4nB30OtpDAVX88CtkxVsGYamU01Kch2ngbVA4a4RNkjmBx+4nlcxob1cwWOBGtEYh0hMh9FWF+jeHcYNPyKy/lxEY5yzYiImxuFKwnXN4KZ7FRPauWtYLKYHa88/bx69NzEx4pYlNpujHl+myjWZEHbiICLurmMX1nv3vssuzEdE1EdYmD8d69Sp4nWoVL61n2fXa0xMhccpx7JBLrKUN4J3RsuWrbBjx2689957UKvVSElJQZs2bbFjx3cet+8JSspMBYWaT9OmTUuio6N/GTx48LHq7ouCgsLthaKUUFCQg6dbWKNH05SZ7twcKhNhn+V81XsyTrGyYsIlw9DMD2Jm/944UYsJ6GxAyGnT+EL9gAEOJYNYWk8WQqhbBjs/PXoAZ85I94cbqJMLGz8kJYW2fe4cEB/vEPLlWq3ImVdWmC1X8OQiEBloSoMoYir2MXpEzbiMrGtqZKApchHIv561VhAGdxw92hHM8vffXSuPpPoFUAWNK/cIVhEE+C7SX/ka1wx4BKm7hyFtwk27sK7TBSEtbTBSU/tBoylfd2LxUlQq+uzKtJ93G3hSuF6FeDhOuZYNcggL80dERH1p5c32Dbx3hmXFKkRH70afPt9h1Kg4HDx4EHfffQ8uX76Ep556EuPHv4KbN2963A93+NiQRkFBoZLQ6XQlKSkpexMSEo5Vd18UFBRuLxSlhIJCZdG1q2s3h6rE3Ve9HLtoOUi5LYhJEd46US9b5nq3mRXqd+7kKxnY9KNi2Gx8IVqO1BMeDjRoIJ6ZhA3euXMnTaPJzVjBpgz1RMpyJbSXK3i0qkJ7MM8sNEQkptuzPhiwyCkIpb1dqewhffrQNexKeSTVL4aRFzNj507HXFY00p9gTjXMLWhnvEyPl69vrfWaQyEh1W5iIh23VBuc50RW4ElXsSs8HKcsywYP0GjUNOZF2mBn5c2S+6GZMJ63RnMnTEfGsRx7e6Wl4bBa3wBA81kmJn6Ojh074uDBgx71wx2+NKRRUFBQUFBQqHkoSgkFBV/DFVxqSvQyV1/1vrSLZoU8d2b/3PKeWKCYTMCiRc7HxQJCillTvPqqeL0qlbNyQUrq4d5fV7EjxIR8V1lD3MXUcBfz4+BB6EgekrGad2kyVtvTdLpFrA+u1rBUv8TibqhU/HUhjLHCtvPjj949K1JzumyZ6/Ut9xktf04sffvDrGsHJCXxAk/26SMReFJsjXiZssKtZUOYv+y6WHgxL8rRagOgOX/GaT61tuswLGjMi2lx7lwp9Pox+PLL7QgPD8fp06fRu3dvvPnmm7BYLB73RwwlZaaCgoKCgsKdjaKUUFDwJWICfk2IXib1VR8Y6Hu76AEDgE8+cT7uCykiM1M8PsGUKfLcHcrKxOt94gl5Uo/w/u7c6TpmhZSiwRspy53w3LUrjPMSEYsXeYdj8SKMqOdcn1gWFQA4fJj+VxhrQmoNi/VLTFkRF+de8RMeTt1tMjM9X4NSwv/ixe7Xt7tntFzJZbERGreDiYdx3Exordewfn1f+PkRnD0rEXhSyhrDi5QVLi0buG4pvkBijep63y8a0+L55wfhxIkTGDFiBGw2Gz788EP07NIFf//9d4W7oqTMVFBQUFBQuLNRlBIKCr6iJjs+S33VFxb61i6aFdqFFgm+kiKkBM9Jk9yXU6uBxx8Xr/ett9xLPWL3d9w4IDgY+OYb8XpVKjrHQtcYsfsxb557YdyF8Gw2FyFqRaDdZSMNC+yuHFGYSrNyqNXUnYRVIMyf79zGzJlAQoJn1jNi/RIqK6TiN3DnJykJuPde76x2pBQhvljf5UouXtwO22Ts23oCI0bsQVkZX9niFHjShxZTkpYNvlRIAJLvDKMtVDKmRWhoKNb16YNUQlAfwB8nTuCBDh2wZMkS2OS487igphidKSgoKCgoKPgewojtOirUGAghIQBu3LhxAyEhIdXal+LiYtSpU6da++ASNhNB69bVs4VmMFBhSux4nz5V3h1RTCYqkLGxCEwmKvxxBQa1mn71u5tD4Xxz6mIA5AEoBqDdvBmkVy/fZjIYP54Kl6zyQExCkSo3ahSwdq2j3MiRwJo1jjFx54eL1P0FqHDtTuhiM2xw+8q2l55OlQE2m3g5GbDxDTLSL8JgngodrsOIeojCVEQgG6kL74Fm+FD+uKTGJByP3DXhDu49EWuTYVDMMLC/ZbxpNz0dSEsDIiMBrZYG8uT+zqlUNMaHp/Eqytc2O6dZaGg/7edHeIoJ1lLCm4wYNQ7OM2FW10dk5DZqDaILQHJ8fcQmXEOWsYjGuEjpCm23ewGbDWYAowH8UF5Nnz59sGbNGjQXS0VbQWr8b5NCjeNOWTP5+fmoW7cuANRlGEYkcJD3EEKadOnSZe7q1atzIiIiPI+kq6CgoCCTgQMHtlUsJRTuDGpCvrjbwfFZuKPtrV202HxLBfRr2NChtBALpik3yCZbjs1qIbZlKoznwWbdOHDAUW7NGuDQIWDJEvpfViEhNj/cOoOCXMePcIeY5Ux4OF0frEJCqpwM7Kb9Ox6ETnUDAKDDdaRhAVKRCA1zy/m+SlmeVNS6QOqesvdEDG7QTW/bTUqiQU3j4uh/N250LuONIp7znOhwHcmqtbzTZWWMTwJP1kg4z4Q9pkVDwHBhMnpPfAKGC5Ohbwga0yLXaF87WgDfAfgcQEDt2ti7dy/at2+PtWvXQtkMUVBQUFBQUOCiKCUUbn9qgtsEazUwf/7t5/jsqV201HxLpQIMDOQrMXQ66kIAyFcmicVyECoPhGVGjeILqNy6u3YFJk+WzrIgVmePHsALL0jHjwCklRYsYkK2D1MLaDRqaDu34rllaJEPDazArFnisRTE3Egqolxzd0/PnpU/IE/alQpuKhSAGcY796Ty58S46SfEhr/NO+XnR7B+fV+fBJ6syWg0aqQuuR9pV2dAx+QCAHRMLtJyZ9JsHW3u4a0dAmC8Wo0/f/oJPXv2RH5+PkaNGoVnn30WOTk51TQKBQUFBQUFhZqGopRQuP2p7nxxXCFsxgxg7lzvHZ+9Sc3pi3SengTjlJrvzEzx8keO8IVFhgGmTwfefFOeMkmO0kmszNq1FVNUidW5fj3d6V++3Lk8IcDBgzSrglgASUBcyK4MC5vOnZ2PST0TQqXUc89RRY5QuQa4X2cVVRByM3R4qtQTW5esO4ywjcBAeXUKMKvrI+qNqw53hbSn0LJlEMrKGIwYsQdmc1HlBZ6sIWjOn4GWyeMd09quQ2PMkrS8avXgg/j1118xZ84c1KpVC1u3bkW7du3w7bffVv0AFBQUFBQUFGocilJC4fanOt0mxISwWbPEYxK4wxsXlOpwW5Ga78hIcUuBCRPE3RvmzJGnTJKjdJJyHXFXtyv27xdvNyWFjkkIITSGQXQ0sHKls0WFlJDtyoXGW4WTp88Eq5TauZOuo4QEOvb4eKqoAOStMzn3qlcvcaWNSkWVIb/84lqpJzUnUmPmWi8BtH9CyxmZiKXk3Lv3KSfLiEoJPFlTcLe2JCyv/Pz8MGvWLBw6dAht27bF5cuXMWjQIIwdOxYFBQVVOgQFBQUFBQWFmoWilFC4/anOfHG+stLwZoe5utxWpOa7a1d6XMpKQAjDOJf11pJArIwQT10QnnvO+TibYlLMJ95mc9x3rmB26JB7yxmhIDdgADBtmnyFk5igLmbtIBYrg71GuJ4YhsbdMJvlrzM59yo8nK+0UanoeAGqDHn4YWqJcuyY85hcKeGk1mV8PLVu4a61isbtqIqUnDUVOe9bF5ZXHTt2xOHDhzF16lQQQrBq1Sp06NABaWlpVdN/BQUFBQUFhRqHopRQuDOornxxvrLS8Ea5UZ1uK1LzPWCA/ECCwl1sbywJXJUZOdI7RZVQOGchRDzFJHc8QuG7Tx+qrJHjGsO1VtDpHNYKgGshWiyWhpi1A/eZkBuo1GqlmSzEjosFrJSrIOSun4MHgV27+MqQlBRg0CB+/+Qo4aTWZWFhxYNollNlKTl9hMVidQq4aTYXwWIRyYAilwq+b2vXro2EhAQYDAY0b94cZ8+exUMPPYQZM2agtLTU+34pKCgoKCgo3JYoSgmFOwdP4iL4sk05Qpg7M3xvlBvVne1DbL6l4kqoVMDs2Y7+svM0bZo84UYqk4awDLeuNWs8F5xMJioQSykeGjcWt8hwp/Rwd//Z8+npVPAWU+yICdHuYmmw1g7urhk/nmYXEbNckXLLiYkRt96QK7Cy66ew0LXrDds/KXcaoXJEbF1W97NSTbBpYiMjt8FopBn9jMZCREZuQ3T07oopJnzwvn344Ydx/PhxjBo1CgzDYMGCBejWrRuOHz/ufb8UFBQUFBQUbjsUpYSCQkVxJ4TJjfsQF+cstLv64K+I24ovgmOKIeVGMX8+8MEHwPnzzvPEpsXMzJTujzDVIzuHwnGEh9MghikpVMAH5FtusPdp6lTx8wxDsznMm8d3PRCzROD2beFC1/dfmOFDriUGID+WxoEDjnmSsohISeEfI4TvliOMkcEwVLmRkiKe1UOuwCrH9cZqBfbs8Uw5IuxPdbl4VSO5uaXIyLhmT1G6b98lREXtQFZWATIyriE3V9oqoVIsLEQICQnB6tWrsXXrVjRo0ADHjx9H165dsWDBAlitvm1LQUFBQUFBoWZClHzhNRtCSAiAGzdu3EBISEjVNMoKLq1b8z7ai4uLUadOnarpQ2UiMb5Ka6t5c74QqFZTIZZtOynJsXPNBvubNEl+30wmuoMuN7imsL3ERN+6uyQlgRk3Dnk2G4oBaOfPB5k+3fv+SM3h3LlUScC97rffqKWAEEKoYmTaNPE+iLUhhcFA59rVnHPHJIR7/+W2ywrRwvuUng506+b6WpWKKhAYhv7/vHmOeePWb7PxFTjCdZqSQhUAUm1UZB1x5qsYgOhbRqUCnn0WSE11PifsqxSePit3AEZjoV0RwcIG6mTjYghhLSwyMq7Zy7H1RETUr7T4GZcvX8bYsWOxY8cOAEBkZCSSk5PRsmVLl9fdMb9NClXGnbJm8vPzUbduXQCoyzBMvi/rJoQ06dKly9zVq1fnREREFPqybgUFBQUuAwcObKtYSijwqY5sDlVJVY/PXdwHMVN6obm9OzzZla6K4Jis5cj27VRollIEyO2P1BzOmMG/btw4cYUE4EhDmpAgfn7ZMnkKCdZawdWcS8Wk4Padvf9Slg6sRQBriXHgAKDX07q51iGFEt+JXIsbViEBOLLDCGN5TJniPuZCr17SFg3sfUtP98wChx3LgAHUioYNeCnVxldfiZ+TGx+iqly8KsMSycs6dbogJCdH8Y4lJ0dJKiSAillYVITGjRtj27ZtSEpKQlBQENLS0tC+fXskJSVB2UBRUFBQUFC4c1GUEgoOqiubQ1VRHeNz58te1cEqq6q98HAai6BJE9fClJz+iM0hu/vPRY5SYcYM536YTMCiRc5l1WpgwQL5Jv/sOMViHwjrZe+/1Po4eJDWdf48cN991K2jb18aAFOncyjVDh92ff2GDeLKhi5d+C5HkybJy5oh5sbBrbd7d/kKP6GCcOdO4McfgV9/pUoSISqVZ64t1UVlKD4rUKfRWIjYWAPvWGyswR5jQgytNgAGwyDo9cHIyipAZOR2ZGUV2C0shIE+fQkhBC+99BKOHz+OBx98EIWFhRgzZgwGDx6My5cvV1q7CgoKCgoKCtXHHamUIISEEkIWEEJOEELMhJBL5f/+JoQsJ4Q0llFHZ0LIdkJIFuf6bELIIULIGEKI05c5IaQ1IWQDISSTc81FQsgfhJAZhBD/yhmxj6jObA5VQXWMz50ve1UH4Kvq9jZudC1MyU0hKZzD+fOdr5OTipSbtpMlM1M87sSUKfIDcXKFxuHDpfsivP/h4cALL/DLjBjhyNgBOKfpFLN64FpWsHEg+vQRt24QWnuwc8CNleEua0ZKirjVBLdvYgo/YUBPMQVhRga1XBH2ed488TbZMdcEd4zKUHxWoE6zuchu4aDXByMt7Sm7oiEqaodTzAgu3lhY+JKWLVvCYDBg4cKF0Gg02LFjByIiIrB169YqaV9BQUFBQUGh6rjjlBLlyoKfAdwE0AdAE4Zh7mIY5i4APQGcArCPECK51UMI6QwgFcDnAO7nXN8MwAsAngQwX3BNeHm73wLowLmmKYDBAO4G8KUvx+pzanKEel+YQ3syPl+aX3MFuQ0b+CbqVR2Aryrby86mrgeuBFVvUkieO0frFV4nFaCSi9j9lgq02KiRo4+uTP6FQiNXccBCCL3/QsWGyQSsW8cvu369Y47cBbJ0p1RzN79cZQobxFNO1ozoaH69YvMn7Bu3re7dxRWEK1cCEybwz6lU1H1l2jTnscTHU2uSqkoB7I7KUHxWoM6wMH9ERNS3Wzj07n2X3QIiIqI+wsLK9eQi7ztvLCx8jVqtRnx8PA4fPowOHTrg6tWrGDJkCEaNGoUbN25UWT8UFBQUFBQUKpc7LtAlIWQogOcYhnnWRZmPAJxlGEbUeZ8Q8i2AFQzD7JA4HwjgbwDdGIa5XH7sEwD/MAzzscQ1KgB/AHiRYZijHoynagNdJiVRwdFqdQquV22BoXwZmNHF+CqlPbl1VnUAvspojxNAlGnaFHk7dqB48GBoAfDsBgwGxw59RfvDvc5spsKu1DtN6n4DNNaEMPaF3OCJBgMVtN0hNm6pa9myngTgZBHrt9j8ygnC6g623sBA58wh3gT0BMQDXXLnriYHq/TFnPq4TovFitzcUp7LhdlchLAwfxqsUuTdZH78OURGbrNbWCQnRyE21sCxuBjsvQuHl4GGS0tL8e6772LBggWw2WzQ6XRYu3Yt+vTpc8cELVSoOu6UNaMEulRQULgTuFMDXbYDYHBTZnd5Oa/qYBjmJoAjAO714BobgD1u2q1+3KW3rGp8bQ7tbnzVZX5dVQH4Kqs9MZ93vd65nJRlirf9Ya/buZMKxVIKCXa3XWo9d+7sfEzuDreclJZi42aDQroqu3OnZwoJQLzfYvPri119tl5h2lChRYa7gJ6uEHPnqcpnxRMqwxKpgnVqNGonBYJWG0AVEhLvprDiq/IsLDylArEx/P39MXfuXPz666/Q6/UwGo2IiorC1KlTUVJS4l1/FBQUFBQUFGoEftXdgUogHMBxN2UuAtC5OF+XYRh3WmFhHeEAzBVsVxKGYaou+njTpvQfbbh6+sDy77/iglNmpqOPniIxvkprrzLqrEmYTMDYsTw3DWbcODB//glm4UIw06c70lF+/jkdsyfryN3OqrB9MWw2mqlCqkyrVtTFgntepQLuvttxTKofTZtSt4cZM6Tr/7//44971CggOdm5HHeOLlyg4/IUQvj9lkLOmD3hpZeARx/lWzGw9Ui1deAAkJbGc71hyv/Zy3izZqoTV/NQk+oEJN9Ntc6fQUrKI3YLC4Zh0KxZIH777SmEhfmjVi2V578FIu8JjBtHx+WB0qZXr144evQopk6dilWrVmHx4sX44YcfsH79enTq1MmzPin8Z6mW75lK4E4Yg4KCggJwZyol1ACsbsqUoeJjF9bhk3bLg2Fyt6GCASAvLw82T3dMfUxxcTFKSysnFZwkjRqJCzMNGwJ5ebdHe1U9hqrm6FEnAYlhGNzIyEDx44+jzoABIOfOAS1bUuHSkzGvWwdMnkzrJwRYutQ5MKRI+064m++gIFr3lCkOM/YlS+jxvDzX/Vi3zrVCAqBxIqZNo+P/4w9xhURCAo03ws6RnHGJwTDAjRu0765wN+bsbCAri1q8yFWeBQUBHTvS/+fOdVAQEBMDbNrkODZsGFXwBATwno9iAKUqFbBqFbXA8HTN1ASk5qGm1enq3VRUgDp1gLw8i/1UnTpAUZEFRdLxMaURW882G3DsmPu1KsKCBQvwyCOPYNKkSTh58iS6d++OGTNmYNKkSfDzuxM/bRR8SbV8z1QC+fk+9dhQUFBQqDaUX+6axywA7wgPlpSUoFatWtXQHX4fqpz69YGFC6lAxwqECxbQ48XFt0d7VT2GqubwYadDDIDixo1RWlqK4kaNQMLC6Am54714EThyhKaqtFfKUMVAr1401SgL9/+lGDsWKClx3f7QobTuc+eAFi1ovcXFtC9S/QD456Sw2YBTp+g9//VX8TIFBfw1IWdcUuzfDzz5pPtyUmPeuJEGkWRJSACee877/ly8yFdIAMDmzdRCokkT3vNRAtDngw0I64tn5OJF4OxZqhiryLzeaVTlu0ls3gkBtFqv23rooYewe/duTJs2DTt37sSHH36IH3/8EcuWLUPLli0r2GGFO5k7xeWnksdhtVqttlu3bslIbaWgoKDgHTabDbdu3bojA12uAfANwzDflP99L4AfAAxkGObf8mMdASxlGKaPRB15DMOEcv6eCaAXwzBPcY4tBXCMYZg15X+fA9CRYZi88r9HAJjKMEwnzjWTAYQyDPOui/6LWUqY8vLyqibQpQuqNTDUnRIIUizYoJhLgJfB4KocNgif0FJi3jzkjR2L4uJiaLVaEDnpOlnYwHtS76Y9e5wDRrIBTNkd/xUrqFC7bBmweLFD4PImaKnBADzyiHg/GEb8nBCVyhGYMD2dBuQU8vvv1DJAOC7hXKxcCVy/DkyfLt2eq7HKcYcR3lNu/73B1RwKAlgWN22KOq1be9eOGNw59HYNsNzuz6sUVfV+FXtOfRC3qKioCF999RVef/115OfnIyAgAAkJCRg/frxn7x6F/wx3UqDL0NBQoHICXdaNiIhI+OSTT4offvjha76sW0FBQYHl2rVrfk8//XSrO14pIVGmIzxQSkiUWQoXSgmJaybDjVJC5Jqqzb7hgjvlR7zGIJWRozKyf1QWEtkjmD17kNexo+dKCXdZGlxlHRAKVr7KhOCqHsB9VgmxrB+jRgFr1zr+HjkSWLNGuv1vv6XZRZ58ku4sy8lkITZWOWvLXUYQb/DgXvj0PWMyATodX8HibTYM4dzFxVErmZ07pef0dldWVAaVoABh14zRaMSoUaNgKA8gO3DgQCQlJaGJYh2jIOBO+Z6p5Owbfi1atJj39ttv13/xxReNvqxbQUFBgWXfvn2hr7/+esidmH1DTrwIv/JyFUFYR1W1q3AnIJWRIz3d99k/KhOxzBNSGTbkIJWlga3XVdYBYVYGOdklTCYqbLuaX1fZD8TOLVhA6zx0SDrLy5o19PySJfS/rhQSy5YBEyYA779PM4wsWyYvI4fYWN2tLZMJyMmhFgVcKnJPgcrJSiGHZcucLW48zTACiM9dQgLQrBl1DRKb0wpkmrijqcTsKTqdDrt378aSJUvg7++PH3/8Ee3atUNKSorP21JQuNNhGKbswoUL6b///nvd6u6LgoLCncuBAwcamkymM3eiUsIE4C43ZZoAcKX1zSOEuIu8JazDF+0q/FeQEpjT0iqeprEq8bWwKaXkSElxCPdyFAmAaKwLnnDtidDoKpWs8Ny0aY40ma6Er65daWwKocsGC9u/hAR+xoJFi8SVBu4UCe6UNGx7MTH0b7Y+XykQqjrdsMlEXXeEqFSeK1hcKcvElB4HDtxeysU7CJVKhcmTJ+OPP/7AAw88gGvXriEmJgb/93//h+vXr1d39xQUbiusVmvGiRMnSrOysm5/sxIFBYUaR1lZGTl48GDtnJyc9DtRKXECgDsn70fKy3lVByEkEEBnAP94cI0KQJSbdhX+K0gJ35GRvrU88Ba5gj/gW2FTSskRHU3PyVUkmEzAzJnOx+fNc7h2eCo0utrh9fXur7B/XBjG2R1hxQoaa8KVcsiVVYuwPTaFK1cZ5AsqcZfcCSlFQlyc5+2LzZ0UajWdv9tJuXgH0qZNGxw4cABvvfUW1Go1NmzYgHbt2mH37t3V3TUFhduJzHPnzhlXrVrV0mKxKAFaFBQUfMoXX3zR/OTJk1cB/HUnKiW+ARBOCHmPEBJGOM7shJAQQsjrAJ4AkOiijrcBLCWEPFEeeJK9XkUIaQVgPYAtDMNc5lwzD8BUQsj/EUICONcQQkhTAJ8DyGIY5qgvBqlwmyMlfHftWj1m7ly8MTv3pbAppeTwRJEgJZB26SJ9nt3hrgns3y/PRUOlon0ePdq9csiVVYvUfDRsePvGQhBTJKhU8rKlCBHOHRdCnOe0V6+aoVz8j6PRaPD+++9j3759aN26NbKzs9G/f39MnDgRRV7lNVVQ+G/BMIzl4sWLSZs3b774/vvv368oJhQUFHxFYmJiixUrVjB///33eoZhsu84pQTDMFYA/QDUAfALgIuEkEuEkEsADgGIABDJMMxNACCE9CGEnC4PKMnWcRTAEADjAZzkXG8CsBE0m8d0QbvZAPoCeBLAn5xrLgL4DkAWgP+rxKEr3G5ICZFVbebOxRsLgsroQ2amcyA8OTEiWNzFupDa+R4+vPp9/xMSaD/kYLMBN2/yj7kKXiy1tnwdG8QNFosVZjNfKDSbi2CxWH3XCKtI4I6LYWhgSm9g5y4+3lGnWk0tVIRzWl0xNGo4VXLfRejevTuOHj2KCRMmAAA+/vhjPPDAA0hPT6/UdhUU7gQYhsnMysr6dOPGjRdfeeWVdqtWrWqemZkZ4P5KBQUFBT6XL1/WbNq0qcmUKVMili9fbvvjjz++YBjmNwB3XkrQOw0l+4ZClZKS4ogpwMXDzAsMwyAvL8/z7BuuskOwqTTlZlJwl2mCe56L3OwMlZFZYeFC8VSfKhXta2KidAYLOZk1XPWZTddotYpnDPERFosV0dG7kZFxDQbDIOh0QTAaCxEVtQMREfWRnNwbdeu6C+kjE19m3xDWKyeDBLcc8J/OxOHuvqem9oNGI2KJIgNPfpt27tyJF198EWazGWq1Gm+++SZmz56NWrVqedW2wu3JnfI9U5nZN4QQQnQqlapreHh496ZNmzbV6/X+oaGhTGBgIFHJdW9TUFD4z8EwDIqLi5mCggJkZWXZsrOzLxuNxsMWi+UPhmEy2HKKUqKGoyglFKqMigrpHLxSSrhKG8lNu8g950pwliOke6uEqYy0rWICNLef0dHSigM5KTflKi3cCdveKGM415jV9REZuQ1ZWQXQ64ORnByF2FiD/e9dux6FXh8mr153VEZ6U2+4ndL8VhJmc5HL+56WNhharXebr57+Nl27dg0TJkzA5s2bAQBdu3ZFcnIy7rvvPq/aV7j9uFO+Z6pSKcFCCKkF4G4AzUGtkv1dX6GgoKCAWwCKAVwCcIphmGJhAUUpUcNRlBIKVYKYUAt4LUB5pZSQEiDffhv44AN+31Qq4OBB6cwVcoR0T8p5U7enSI1fpQLOn3fULaY4cCd8+6rP3gjXItcY+8cgKmoHsrIK7MX0+mAYDP/f3p2HSVVdfd//rm5AEBkcw6QoiolJY0AccUAxF7y3mpj7MYlDEDUOMWociUDuOBsniCDio6gYARWnKHHmcWijoAQHxiQmKhppEDXcAgINKr3eP06VFE3NdapPDb/PddXVUHXOPquqdlf1WWfvtX/IjjvWhvc5U6z3qtxiKJYcE1TxkRHJ3vdddsl/dEy+303Tpk3jnHPOYeXKlbRt25abbrqJc889F131rXyV8vdMFEkJEZFi0DeviKQuDPnggzBkSPYrcRSid+8tl7UEuPrqLWNLVkshUbb1J/KZ+59LbYtcpHr+N964eTzJiopmqgmRIeas5vqnqzeSarWWFPvsUrOSKVOO2GzTKVOOKOjENKlSqO1Q6kVV85VHQdxddtmmZd73LJ144oksWrSIwYMHs379es4//3yGDBlCg5ZuFRERaVFKSohI6pPaDz/MfSWOfOVSgDBTEcZcCjfmWli0mEUhk41cy6boZaaT7zQxx+f6H3LIn/noozVAcEX7kEP+zE9/+sKmxESqk+tbbkndR1Ls89GsfzBsWP1mdw8bVs9HT86C8eOD+iGQ29K0qURZOBZSF1U9/vjoi6rmK8+CuB99tCb5+x7rd1Ho3r07zz33HBMmTKBdu3a88MIL1NXVcf/996ORpCIiIi1DSQkRCU5eb7xx81UFbrgBRo7MbyWOhgZ49VVYtiy748dPcrI5CcjmaneuV8hzWdK0WFffX3st+f3ZXlFPd/KdJuYVKzawaNH/snjxFxxxxJPMmrX8myH2ixb9LytWbAj2SbXE5s03p+4jSfb5uGZbjrj0k4RaAj+iV68OwfF/9DIfj/w97L8/HHxweAmxMJeszefYyZYTdW/5lW3CksdooY8/XvdNv9rifT/iyS1G6rQkM+Pcc89l7ty57L///qxatYqhQ4dy/PHHs2LFisjiEhERqRZKSohUs/iV6DFjYMSI4ETDDK6/Hvr3z2+aQnxY97HHBjUfsjmZTDV9JFFNTVDwMdur3cW8Qp5N22Fc5c9VupPv008PEhw33xz8jMXctevW1Nf/8JsTxEMOeeKbE8f6+h9uKj6YLLFx8cXp+0iSfbb/vzdR13fHb9o/+OAu1I/bhV58Rh1L2Z7YtJzXXot2adownX46PPDAlveHMe0nCnmMFtp++62oq9tu8/c91u/q6rZj++2jr5X37W9/m1mzZnH11VfTqlUrHnnkEfr06cOzzz4bdWgiIiKVzd11K+Eb0BHwVatWedTWrVsXdQgSprvvdq+pcQ+u2W5+q611nzNny8dra92XLEnd5pIl7jU13gT+v+BLwZtqatLvk7DfZseqqdl0X21tEG8Ylixxf+mlzDEVIvG1ranJLvYlS9zNtnwNwoqzeUzDh29qe84cn3neWIeJ39xmzvw4dZz19cHPZO9bsj6SuI+7b9jwtS9btnbT43/4gy+jo2+g1tcl64/xW319OK9FFLJ9rcrF3XcH8efw+7nF++7uy5at9Q0bvi4olGJ8N73xxhv+ne98xwEH/Oyzz/Y1a9aEfhyJRqX8PbNq1ap4H+3oJfA3q2666aZbvjeNlBCpRs3nhDe3cWNQSDLxKndNTTCCItcikE1Nma8GJ7sKf+edwaoTYY50yKM4X87ynG9Pjx5w111bvgZhTDlIFtOYMcESpAcfzEf7D2HYhM0Lh6ac6584GqNHDzj55M0fHzp0y5ibjeBo06Z28+UfDz2UrqymDRtJKay6HVEphaKbYcpjJNIW7zvBSJ02bWpT7BGdfffdl7fffpsLLrgAgDvuuIO+ffvyerkXKBURESlBWhK0xGlJUCmKVEtIxsWLXEKwHOeddwbXdjMtAxlb/tCbmlhJsCBx15oaLHFJy3SSLXcZlpZamjHT8pyZFOM1SPN+f0xHDuFSFrMjvfiMKfyRYd1/x+KlX8bm/h+7xYnkZrE2f01ramDaNBgwILf4Tz0VJk+mkWDh+2/aamradALf0kUqi6GYfbxKFfu76cUXX+TUU0+loaGBmpoaRo0axeWXX06bNm2Kdkwprkr5e0ZLgopIpdBICZGoRFFzIC7VigCw6QRwxozghHPixE0FKDNd9Y9fDU5c2jKXq8HFLEhYrKU8myt0dY5ivAZp3u/tWUsdS+nFZ9TzBw7mfepPX5XdXP9UI2OOPz73kSjXXpv8/lzqiJSCTL/XURbdlLwceeSRLFy4kKFDh9LU1MTvf/97DjzwQP72t79FHZqIiEhFUFJCJAotMY0gnWRDyW+6adNQ7CFDUk/vqLTifJ9+Gm5iqBSH6adaAQJow0Ye4U5mchO78DkAuxwzgJkzj+WRR36Qfmh9uuRWrsUp3303eRs77lg+J/BR/15L0XTu3JmpU6fyyCOPsN122zF37lz69+/PzTffTFOmIr0iIiKSlqZvlDhN36hALTWNINtYkg0lTze9I12shU7fKLZJk4IT5Y0bg5Np9+TTUhoagpPk3r3zj7sUh+k3NMAtt2xaxrO2Fg44YPPlSE85Be69d9P2mV6HxNc0mVymrfTsSWNT06bpG1H9XuSjlH6vq0xLfzd9/PHHnHHGGTzzzDMAHH744dx777307NmzxWKQwlTK3zOaviEilUIjJURaWktNI8hGqqHkqa6A19Skv+qfb6HLlhIvzvfww5sSErD5Vf3mV7tHj04/HD/VcP2WHqafzXSgHj2C55NYQHTWLJgzB8aODX7GExLNX4cxY5K3mfiaFjpt5c47N7VRCiNMclFKv9dSVF27duWpp55i4sSJtG/fnpdffpm9996byZMnows9IiIiuVNSQqSlFVpzoCUkm4IwfHhwMptubn+y51ZTU3rPbYcdNiUk4jZuhNdf33KViksv3XRi/pvfbH7S31LD9TMlHHKNo3nCZL/94MILg5/x4zV/HX7zmyChkaq9n/608Gkrp58O77wT7oorLaUcfq8lNGbGWWedxbx58xgwYACrV6/m1FNP5bjjjuOzzz6LOjwREZGyoqSESEsrxZoDyTRf8m/06MwxNr/abQYXXRR+bPGT9DfeyK9YaKoTSPfUy6QmLqM5aVJ2S3+GUcw0U8Ih3yVI00l21R9g5Mj07eaxTOQWyrUQZLn8Xkuo9thjD1555RWuu+46WrduzeOPP05dXR1PPvlk1KGJiIiUDdWUKHGqKVHBSrHmQEh8yRJW3nQTjRMm0BWwTEuJ5mLSpC2LcObTfmIthPgJ5JAhW9YFSKa2Fh54IFhlorl4DYXEOPN9/pnqFDQ0BNMmLrkkdRz5SHbcuIcfDkaaFFJvI42y/5yp4N/rUlUqfWbevHkMHTr0m1U5Tj/9dMaOHUuHDh0ijkyaK5U+UyjVlBCRSqGkRIlTUqIChVFEscT5kiWs7NmTRvcgKQHhFP1Ld7KcT/vJTiAzFW6Me/hhOOGE5AkDCKfoYaqCo/X18P77qVdISXWsXPremDHBlI1EZsGtkERLBvqckVyVUp9Zv349l112GX/4wx9wd3bbbTcmT57MoYceGnVokqCU+kwhlJQQkUqh6RsiLanSlgxMNT3h3XeT12wotOhfqmkF+bbfo0eQkHj33U3PIXEKwujRSZfRpLYWDjoo9XD9sIoepppm0r59+oREsmkDufa94cODZWLjx4//DHOaiEiFadu2LaNHj6a+vp6ePXvywQcfMHDgQEaMGMGGDRuiDk9ERKQkKSkhUkyJJ+3FmPtfDNnWQUh3ktu7d3BFPVEYRf9SrQqSb/upnkO8rsHw4UGCYvjw5KtCpKqhEFbRw1R1CtasSZ6QGDs2eS2HfPveb36zaaWOadOySzSFUUdDpMwNHDiQBQsWcNppp+Hu3HTTTey///4sWLAg6tBERERKjpISIsXS/IT3lltyu3oexcldtlfTM53k9ugB48ZtSkyEVfSv+Ul6XD7tZ3uinmwZzcST/mSFGcMsepgs8bHNNsm3Pfjg5McoZORG/PkNGJA50VJpI4FECtCxY0fuuecepk+fzo477siCBQvYd999ufHGG9mYaXqYiIhIFVFNiRKnmhJlKlntg+bD3yH13P8wiiSGEXOq+NLVOjj8cNydlStX0vj++3T94gss7PoZ8VoQ7dvD2rXZFRVsXk8hw3MINc6wix7mGnsu7206yYqDxvtlSMfQ54zkqhz6zKeffsqZZ57JE088AcAhhxzC5MmT6dWrV8SRVady6DPZUE0JEakUGikhUgzJrkw3NcHFF2e+eh7VNI9crqZnOz2hW7fiLO8Yv3q/337ZtZ/sCn6q0Qbt24cfZ9jPP5vXP3GkTVgjN9It+RlWHY1k8YuUuZ122onp06dzzz33sM022zBz5ky+//3vc/fdd6OLQyIiUu2UlBAphlQnjRdckPqkLi7sk7ts5VIHIdlJ7g03bF4wshBhnpCmSvJ88EHy7deuDeeY2cafz7aQPsmQLAmTLqGQi1SJllT1Pt58M/djaBqIVCAz47TTTmPBggUcdthhrFmzhjPPPJMf/ehHfPLJJ1GHJyIiEhklJUSKId2V6UxXz8MqkpirXK+mJ57kXn89jBgRzklk2CekqZI8ZsV5nXOJv5BtIXmSId1Im2KN3ICgzRtu2PL+kSNzSy6VS0FYkTzttttuvPTSS4wePZo2bdrw1FNPUVdXx2OPPRZ1aCIiIpFQTYkSp5oSZS7fmgLp5u4XW64xJ6kl4DU1rJw/n8bttqNr165Y85U4cmgrr9oH2bY5Y0a4r3Mu8Rdr25aolZFKCMdufO452v3XfxXUhlSXcv5uWrhwISeffDLz588HYNiwYYwfPz5eJ0CKpJz7TCLVlBCRSqGREiLFlO+V6bCG2ucj15hT1c9oPj0im2kKxZi6km4ESNivcy7xF2vbqEbahHXs3XePLn6RFtanTx/++te/MmrUKGpqapgyZQp777039fFpWiIiIlVASQmRUlXMofZhSnYiWlMDu+226f/ZTlMo1gl1uuRDmK9zLvEXa9swlyPNVRjHjjJ+kQhstdVWXHfddbzyyiv06tWLjz76iEGDBnHxxRezfv36qMMTEREpOiUlRKQwqU4iu3cP/p9LjYBinpC2RJInl/iTbXv99cmLhRZS76OlRtrER8IMGVL4saMcKSQSkYMPPpj58+dz1llnATB27Fj69+/P22+/HXFkIiIixaWaEiVONSWkbCTUovDu3Vm5ciWNjY10fecd7Mgjt9w+XY2AfGtxlIpc4o9v++abQbHQpqZgVMSNN0L//sEoiXgbpfq6TJq0KfFUUxMkUPJMJOhzRnJViX3m6aef5vTTT+eTTz6hVatWXHnllYwYMYJWrVpFHVpFqJQ+o5oSIlIplJQocUpKSDly901JiY0bsV13Dbd4ZaVJVsgyrsCT/KILuTipPmckV5XaZ/7zn/9w9tln86c//QmAAw88kClTptC7d++IIyt/ldJnlJQQkUqh6RsiUlyqEZBZskKWcaW+JGYxipOKCDvssAOPPPIIU6ZMoWPHjsyePZu+ffty++23owtKIiJSSZSUEJHiK9caAdmsGBKGZIUsE5XySX6Uq31I9Wip38USY2acfPLJLFy4kEGDBrFu3TrOOeccjjrqKJYtWxZ1eCIiIqFQUkKkUpT6H+3lsppIXLYrhoSh+WiS5kr5JF8jYaTYWvJ3sUTtsssuPP/884wbN462bdvy3HPP0adPHx5++OGoQxMRESlY1dSUMLN2wIXAz4BvsSkhsxp4A7jc3d/Pop3ewFXAfkCH2N1NwHLgIWCcu29Ist+3gCeA37n78znErZoSklmIhQbDsFlNia5dMbPIYslLqjoJr78Oa9ZsXnwy7OO+9x688QaMGhWMkIif5Jf66JKQinDqc0Y2k0XNkmrrM//4xz84+eSTeeuttwA48cQTue2229h2220jjqx8VEqfUU0JEakU1TRSYhqwC3AM0N3du7h7F6AfMAOoN7Nu6Rowsx7Ai8BTwPcT2ugOHAvsDtyfZL9uwEtAV6B9eE9JhNyW3JRAplElqeokHHBAca/WxkeT/OY35TfdpdxGwiRT6qONqpFqlmxhr7324vXXX+eyyy6jtraWadOm0adPH55/PuvrHSIiIiWlKpISZrYv0AM4192XesLwEHdf6+5TgHHAiAxNjQRGu/sD7r4uoQ139yXA2cAeZtYv4dg7AfXAaILEhEi4XntNf7TnIpuh4KlqPMQ/Oloi8ZPtSb5OpMOhKQKlSTVLkmrdujVXX301s2bNonfv3ixdupTBgwfz61//mnXr1mVuQEREpIRURVIC6AO87O4pytsD8EJsu0zt1Kd6MNb+S83aMeAid783u1BFcjBpEpxwwpb364/25LIdVdK8TkKyBEUpJH50Ih0OjTYqXapZktYBBxzA3LlzOffccwGYMGEC++yzD2+88UbEkYmIiGSvWpISPYCPM2yzjGB6R6jtuPsn7v5MxghFchU/kWpeF0Z/tKeWy1DwxBVDZs8uvau1OpEOj6YIlLZyXb2nhbRv354JEyYwY8YMunXrxj//+U8OOuggrrzySr766quowxMREcmoWpIStcDGDNt8DbRqoXZECpfsRApg2jT90Z5KqqHg7dsnnwIRn0Kx336ld7VWJ9Lh0RSB0lcJNUuKbPDgwSxcuJATTjiBjRs3ctVVVzFgwADeeeedqEMTERFJq2yTEmY21MxWZrgNjTrOXJnZVmbWMX5j0wofIptLdSJ10EGqM5BKsqHgQ4fCgQdmngIR9tXaQt8jnUiHR1MEpEJst912TJs2jWnTptG5c2fefPNN+vXrx/jx42lKlsQWEREpAVWxJKiZXQmsdPdxsf93At4CznD3l2P3dQbmufuuadr5EOjr7itj/x8KXOLuiYUtLwQ6u/uVSfa/F5ju7tMzxHpF8/uXL1+uJUFlS/feC+edt2kp0AkTgvvPPTeY1mEGt90Gp57aomHFlwRdv349Xbp0Kb0lQRsaYPFi2HprGDhw8ykwNTXwzjvFPSG9995w3qNk738Lv9dhi/RzJt4vevVSQqKM6LspuaVLl/KrX/2KF154AYBBgwZxxx130EN9u2L6zOrVq+nSpQtoSVARKXNVmZRIsU1nckxKpNjmQgpLSmwFbJVwVwegYdWqVUpKSHINDcGQ/fgV8p49Nx/WX1sbXNlvwT9E40mJxsZGunbtWnpJibj6+mCERLL7Dz+8OMdsaAj3PUp8/yvgZCPp50xDQzBdpXfviniOEi59N6Xm7tx+++0MHz6cxsZGOnXqxG233cZJJ51Uup/LLaBS+szq1avp1KkTKCkhImWubKdv5CibOg+tYtu1RDspufsGd18dvwFf5NuWVInEudaqM5CbKKZAhP0eVfpce60wIpI3M+Occ85h3rx57L///qxatYqhQ4dy/PHHs2LFiqjDExERAaonKdEAdMmwTTfgoxZqR6Q4KrHOQDHrYxSjlkCmePN9j1qyTkip1CTRCiMiodhzzz2ZNWsWV199Na1ateKRRx6hrq6OZ599NurQREREqiYpsRA4wszSPd8jY9tlaufIVA/G2j8ii3ZEiqNUC/ble5LbElfJwyxgmU28+bxHLTlaoJRGJmjkj0hoWrVqxWWXXcbs2bP5zne+w/LlyznqqKM4++yzWbNmTdThiYhIFauKmhIAZvYY8BlwNbDMY0/czLYG/g9wHXCguy9L00Z34HVgFPC4u6+L3W8EIySuALZ39+NS7H8vGWpKJNmnI7BKNSUkJxHXGdispsQzz2C//OWmYox33pndiX/YtReKLdd4071HiTUUoOVehxJ4zTf7nCmBeKT06bspd42Njfz2t79l3LhxAOy+++5MnTqVgw46KNrAWkil9BnVlBCRSlEtIyUATgI+BJ4GlpnZcjNbDswHjgKOSExImNm3zWyxme0Zv8/dlwKDgGOA+QltLIu1uxj4eZoYVgG6HCG5yWeUQanUGVi2LP/h9+V2lTzXeFO9R81HKtxyS8u9DqX2mpfqyB+RMteuXTvGjh3Liy++yM4778z777/PIYccwv/8z//w5ZdfRh2eiIhUmaoZKVGuNFKiyk2atOmkPpdRBhH7ZqTECy/Q9Wc/Y4sa79msblFuV8nDiDdZG/H6E9U4UiIxruajSrQih8Tou6kwK1eu5Pzzz2fq1KkA9OvXj6lTp/K9730v4siKp1L6jEZKiEilqKaREiLlpRKK/O22GzRfdi7bwpvNr5LX1MBFF4UfY1jCuKqfbKRCUxNcfHFxRgs0H4VTqiMTmo8qKaW6FyJlrnPnzkyZMoVHH32U7bffnrlz59K/f39uvvlmmpp/HomIiBSBRkqUOI2UqGL19cFJV7L7M40yiNgWNSXOPjuYBhA/yc1ltEdDQzCF4eaby2PESCH1PNKNVIBw64SkG4UTYU2SjJ8zJTCaQ0qLvpvC8/HHH3PGGWfwzDPPADBw4EAmT55Mz549I44sXJXSZzRSQkQqhZISJU5JiSpWxidfmyUlunbFli4tzol6ib8OeZk0KRgRk28SJxsl/Jpm/JzJJ1mX71QPTREpC/puCpe7c9ddd3HxxRezdu1aOnTowPjx4znllFOw5iPfylSl9BklJUSkUmj6hkipKtWh9PkopPBmqRVfLLYwlijNVBy1nF/T3r031dmISzclKN+pHpoiIlXKzDjrrLOYP38+AwYM4IsvvuC0007juOOO47PPPos6PBERqUBKSoiUsjBOUMtdriehlaCQJE42J9Pl/JrmkqzLty5LJdRzESnQ7rvvziuvvML1119P69atefzxx6mrq+OJJ56IOjQREakwSkqIlLpSWd4zKpU0YqTYsj2ZjuI1zWdp21SyTdblOyKknEeSiISotraWkSNHMmfOHOrq6vj000859thjOf300/niiy+iDk9ERCqEkhIiUvo0YiQ7uZxMt+RrWoypENkk6/IdEVLOI0lEiqBv37688cYbDB8+HDPjnnvuYe+99+bVV1+NOjQREakASkqISHmo9hEj2cj1ZLolXtMop0LkOyJEo3NEttC2bVtGjx7Nyy+/TM+ePfnwww8ZOHAgl156KRs2bIg6PBERKWNKSoiIVIpSPJmOeipEviNCNDpHJKnDDjuMBQsW8Itf/AJ3Z/To0ey3337Mnz8/6tBERKRMaUnQEqclQaUcbbEkaIUsI1c2GhryX4I1sY0wlsPMcflRfc5IrtRnovPnP/+ZM888k88++4zWrVtzzTXXMHz4cGrjidESVSl9RkuCikil0EgJEalOYRZeLDWFTssIswZEKY7eEJFQHHvssSxatIhjjz2Wr776ipEjRzJw4EAWL14cdWgiIlJGlJQQkepTjMKLlaIYNSBKdSpEJSemRFrITjvtxOOPP84999xDhw4dmDVrFnvvvTd33XUXGo0rIiLZUFJCRKpLlIUXy0GxakCUWqFSJaZEQmNmnHbaaSxYsIDDDjuMtWvXctZZZ/GjH/2I5cuXRx2eiIiUOCUlRKS6RF14sdRVw3KYSkyJFMWuu+5KfX09Y8aMoU2bNjz11FPU1dXx2GOPRR2aiIiUMCUlRKS6VMNJdyGqoQaEElMiRVNTU8Mll1zCW2+9xfe//31WrFjBcccdxymnnMKqVauiDk9EREqQkhIiUl2q4aS7UPnWgCiXGg2pElPt25dH/CJloK6ujjlz5jBq1ChqamqYMmUKffr04aWXXoo6NBERKTFKSohI9SnVwoulJNcaEOVUoyFZYmroUDjwwPKIX6RMtGnThuuuu45XX32VXr16sWTJEo488kguuugiGhsbow5PRERKhKkycmkzs47AqlWrVtGxY8dIY6mUdb2l+NydlStX0tjYSNeuXTGzqEOSYmpoCE7kE6dE1NYGCZ8cR6C06OdMQ0MwZaN9+yAhEUL80vL03VQe1qxZw/Dhw5k4cSIA3/3ud5k6dSr77LNPi8dSKX1m9erVdOrUCaCTu6+OOh4RkXxppISIiBSmXGs0xEeDrFlTnvGLlJFtttmGO+64g6effpouXbrw97//nQMOOIBrr72Wr7/+OurwREQkQkpKiIhIYcq9eGi5xy9SRo466igWLlzIT37yE77++msuu+wyDj30UN59992oQxMRkYgoKSEiIoUp9+Kh5R6/SJnZYYcdePjhh5k6dSqdOnVi9uzZ9O3bl9tvvx1NKxYRqT6qKVHiVFNCypFqSlSpeI2GPfbI+4Q+0s+ZEOKXlqfvpvK2ZMkSTj311G9W5RgyZAj33HMP3bp1K9oxK6XPqKaEiFQKjZQQEZFw5LpiR6kp9/hFytDOO+/M888/z7hx42jbti0zZsygrq6Ohx56KOrQRESkhSgpISIiIiKRqamp4YILLuDtt9+mf//+fP7555xwwgmcdNJJfP7551GHJyIiRaakhIiIiIhEbq+99uL111/n8ssvp7a2lmnTptGnTx+ef/75qEMTEZEiUlJCREREREpC69atueqqq3jttdfYc889Wbp0KYMHD+a8885j3bp1UYcnIiJFoKSEiIiIiJSU/fffn7lz53LeeecBcNttt9GvXz/mzJkTcWQiIhI2JSVEREREpORsvfXW3HrrrcyYMYNu3brxr3/9iwEDBnDFFVfw1VdfRR2eiIiEREkJERERESlZgwcPZtGiRZx44ols3LiRq6++mgEDBvDOO+9EHZqIiIRASQkRERERKWnbbrstDzzwAA8++CDbbrstb775Jv369WP8+PE0NTVFHZ6IiBRASQkRERERKQvHH388CxcuZMiQIaxfv54LLriAwYMHs2TJkqhDExGRPCkpISIiIiJlo3v37jz77LPcdttttGvXjhdffJE+ffpw33334e5RhyciIjlSUkJEREREyoqZcc455zBv3jwOOOAAVq1axcknn8zPfvYzVqxYEXV4IiKSAyUlRERERKQs7bnnnsycOZNrrrmGVq1a8eijj1JXV8czzzwTdWgiIpKlikxKmFk7MxtlZnPNbJmZLY/d/mVm95vZ7lm209vMHjCzdxPaWGZmb5vZCDPbqtn2ZmYXmdk/EraP7zPPzE41MyvOsxYRqTINDVBfH/wUkarVqlUrfve73zF79mz22msvli9fztFHH83ZZ5/NmjVrog5PREQyqMikBDAN2AU4Buju7l3cvQvQD5gB1JtZt3QNmFkP4EXgKeD7CW10B44Fdgfub7bbsNhjP4hvn7DPfwNnx2ISEZFCTJoEPXvCoEHBz0mTkm+nxIVI1ejfvz9vvfUWF154IQATJ06kb9++vPbaa9EGJiIiaVVcUsLM9gV6AOe6+1JPqHjk7mvdfQowDhiRoamRwGh3f8Dd1yW04e6+hCDBsIeZ9UvY5yjgendfmthQbJ8PgCuAoQU8PRERaWiAs86C+DKATU3wy19umXjINnEhIhWjXbt2jB07lhdffJGdd96Z999/n0MPPZTf/va3fPnll1GHJyIiSVRcUgLoA7zs7ukWrX4htl2mdupTPRhr/6Vm7TwLzEnT5hJg5wzHFRGRdN59d1NCIm7jRnjvvU3/zzZxISIVadCgQSxYsIBhw4bR1NTE9ddfzwEHHMCiRYuiDk1ERJqpxKRED+DjDNssI5jeEWo77n6vu3+eZvs64L00j4uISCa9e0NNs6+v2lrYY49N/88mcSEiFa1z585MnjyZRx99lO2335558+bRv39/brnlFpqafz6IiEhkKjEpUQtszLDN10CrFmoHADP7DnAD8H8zbLeVmXWM34AO2bQvIlI1evSAO+8MEhEQ/Jw4Mbg/LpvEhYhUheOOO45FixZx9NFH8+WXXzJq1CgGDRrEhx9+GHVoIiJClifUUTOzocCEDJud5+73tUQ8uTCzVsDFwKXAOe4+O8MuowhqT2ymsbGR1q1bFyHC7DU2NkZ6fCkf7k5jYyPr16+nsbERLToj2cr6c+akk+Cww2DxYujVK0hIJO67/fYwYQKcd14wYqKmBm69Nbhfn2UVRd9Nko1OnTrx8MMP88c//pERI0bwl7/8hb333psxY8YwdOjQsvyeUt8XkUphCXUgK4KZXQmsdPdxsf93At4CznD3l2P3dQbmufuuadr5EOjr7itj/x8KXOLu/RK2uRDo7O5XpmhjP+B24BPgAnfPOG44tsxo4lKjHYCGVatW0bFjx0y7F1VjYyPt2rWLNAYpD+7OypUraWxspGvXrmX5x55EI/TPmYaGYMrGHntsPpJCKoa+myRXf/vb3/jlL3/JrFmzAPjxj3/MxIkT2WmnnSKOLDerV6+mU6dOAJ3cfXXU8YiI5KssRkoUwt1XAQWP142NwshqJIaZtQXGAEOAi939yRyOswHYkNAWEHzxRK2xsZGvvvoq6jCkDLg7q1evZv369bRv315JCcla6J8zHTvCPvsE/y6Bz1EJn76bJFc77LADTz75JOPHj+faa69l+vTpzJw5k1tvvZWjjjoq6vCyVgp/G4qIhKESkxLZ1HloFdsu9HbM7FvAdGAu0Mfd12doI5MOADvvrEU7RERERIrhP//5DyeeeGLUYeSrA6AMhYiUrUpMSjQQrHKRTjfgoyza6QL8J0M78+L/seBy8GRgurvfmDHS7CwjWAnki5Day1cHgtekFGKR8qA+I7lSn5Fcqc9Iriqtz3Qg+FtRRKRsVWJSYiHwazOrcfdU6z0dGdsuUztHAkkXtDazGuAIYGrC3YOAbYHROUWchgdFP5aG1V6+Eobff6F5i5IN9RnJlfqM5Ep9RnJVgX2mEp6DiFS5ilsS1N3fAv4N3G5m3S3h28fMto4VrLwIyDSS4QbgEjP7uZltndCGmVl34A5gsbvPTdinP/BMmmSIiIiIiIiIiMRUXFIi5iTgQ+BpYJmZLTez5cB84CjgCHf/ZqibmX3bzBab2Z7x+9x9KcHIh2OA+QltLIu1uxj4ebPjbgdcHN82xe1dM4t2bU8RERERERGRElBxS4JKccSWKh0FXB9bIUQkLfUZyZX6jORKfUZypT4jIlJ6lJQQERERERERkUhU6vQNERERERERESlxSkqIiIiIiIiISCSUlBARERERERGRSCgpUYXMrJ2ZjTKzuWa2LGFlkH+Z2f1mtnuW7fQ2swdiK4rE21hmZm+b2YhYManE7c3MLjKzfzRbkWSZmc0zs1MTl3CVlmdmnc3sJjNbaGYfJ7xHfzez283sW1m00d/MnoitaBPff6mZzTGzM8ysNsk+OfUlKS1R9Bsz28rMrjGz95J8nsw2s2OK94ylUFF91qRop4uZ/c3MuhT+zKRYIvqcqTGzc81sUbNjLjezD8zsNjPbtnjPWkSkOigpUZ2mAbsQLHfa3d27uHsXoB8wA6g3s27pGjCzHsCLwFPA9xPa6A4cC+wO3N9st2Gxx34Q3z5hn/8Gzo7FJBGI/TH2IrAWOBzolvAeHQS8A8wys63TtNEfeAS4A9grYf+dgZMJ3t8bm+2TT1+SEhFVvwFGAr2B/ZN8npwJjDGzvuE9UwlLhH0mWTutgYcI+lLbQp6XFE+EfWYo8DPgv9y9a8j7nUoAAA0PSURBVLPPmu8BjcCtIT5VEZGqpNU3qoyZ7Uvwhby/uzel2OZioKe7X5CmnQnAP9096ZexmdUAbwOnufvc2H0PAfe4+4wU+wwBfuHux+fynCQcZvYT4ER3Py7NNuOBD9x9bIrHnwImuvuTKR5vD/ydoP99Ersv574kpSPCfvNXYJi7/zPFPr8Eern7iJyekBRdVH0mxXZ/ANoDBwI/dvcPs34i0mIi/Jz5f8CV7v5ain1aAR8DO7n+oBYRyZtGSlSfPsDLqRISMS/EtsvUTn2qB2Ptv9SsnWeBOWnaXEJwxUKikfY9jcnUNzL1i7XAW8C3c9gnWV+S0hFVv7kfeD9Nm/o8KV1R9ZnNmNnPgMOACzPEItGLqs/sSprPGXf/GvgT0CpDbCIikoaSEtWnB0FWP51lBNM7Qm3H3e9198/TbF8HvJehTSmeMPpGJ3dfk2MbYfVJiUYk/cbdx8dOCFLR50npiuqz5htm9l1gNPBTd1+foR2JXlR9pg2wId0O7n62u3+VoV0REUlDmd3qUwtszLDN12TuG2G1A4CZfQe4ATgpm+2lKEJ9T3Noo6WOK8URVb9JycwOBH4NDCzwmFIckfYZM+sIPAr8StM1ykaUfea7ZnYB0BfoFLuviSBJ8hhws7s3FnhcEZGqppESFcDMhprZygy3oVHHmYyZtTKzS4GZwEh3nx11TCJSnixYWWg08DhwsrsvjjomKS1mZsAfgUfc/Zmo45GycDlwE1CXUOSyB/BjggKpN0cYm4hIRVBSogK4+33u3jnD7b5k+5pZp9iSeocXEkMsMZJTEUIz2w+YTXA180B3f7iQGCRcZvbt2LJpexbQxkgzeyLHfXLuS1I6Iuw3g4F5wLeAfu7+cr7Hl5bVwn1mOLANcHW+x5LotXCfudHd30qcouHuTe6+hGDVsOPMrE2+cYiIiIZDVz13XwXsEUI79wFJEx/NmVlbYAwwBLg4VSVsiVZsVYNeBbZxQx77ZN2XpPS0dL8xs20JVhTak2D1nlmFHFtaXkv1GTM7AjgH2M/dM00FkBLWwp8z76RpY72ZfQj0BN4tJB4RkWqmkRLVJ5s5l61i24Xejpl9i6D6dQ3QRwmJkhJW38ikeRstdVwpjqj6DWbWG5gFLAL2VUKibLR4nzGzHsAU4AR3/0+B7UrLi+xzBshUL2IdwbKyIiKSJyUlqk8D0CXDNt2Aj8JuJzaXdzIw3d3PUcXzkhNG31hpZtvk2EZYfVKiEUm/MbPWBLUjrnL3a3Tlu6xE0WdOIShS+GczW978RrBc5Btm9tss4peWF9X301qgbYZ92hEkJkREJE9KSlSfhcARZpbuvT8ytl2mdo5M9WCs/SOatTMI2JZgGTYpPWnf05hMfSNTv2gP9Af+mcM+yfqSlI6o+s0w4O/u/lCWcUrpaPE+4+6/d/eO8UKFzW/AEqC3u1+X0zORlhLV58xigmKWqfZpA+wG/DtDbCIikoaSElXG3d8i+PK83cy6x0YvAGBmW8dW6bgIuDFDUzcAl5jZz81s64Q2zMy6E8zxXuzuiQUL+wPPuHtTWM9HQjUd6GFmV5nZ9s36Rkcz+zVwNHBnmjYuB8aZ2dFmtlXC/jVmtgdBrYhH3f2ThH3y6UtSOqYTTb/pDzwd5hORFjOdaPqMlK/pRNNn7gBGm1nvxGPG9usMjAWedvcNBT4/EZGqZu4edQzSwmKFJi8CjieoVB//ov0CeAO4zN3fT9j+28CzwP/n7v9KuH8P4BpgX6BD7G4HPgEeBMYlTtEwsxuAX5F+fuYXwHcTq1xLyzGzTsD/AEcB27Opb6wE/gJc4e7LY9seDtwN7OPuqxPa6AdcBdQB8SRDE7AUuAuY1Hyofa59SUpLFP3GzB4EBgNfpgntX+5+WGHPToohqs+aNPG8ARzu7msLeV5SPBF+Px0P/IZgakfixbwvgMeAa939i5CepohIVVJSQkREREREREQioekbIiIiIiIiIhIJJSVEREREREREJBJKSoiIiIiIiIhIJJSUEBEREREREZFIKCkhIiIiIiIiIpFQUkJEREREREREIqGkhIiIiIiIiIhEQkkJEREREREREYmEkhIiIiIiIiIiEgklJUREJBJmNtjMFptZWX0XmVl7M+sRu9WG0F5tQnvtw4hRREREpFyU1R+CIiKSmZmdYmb1UceRhW7AbpTfd9FsYEnsdoWZHWVmB+faiJn9wMwGAVcktDc71EhFRERESlyrqAMQEZHQ7Qb0jjqICtYBuAV4AZgDjAH2MbM+7u7ZNGBmrYB7gEeB62Pt/AD4cTECFhERESlV5XZ1SkREpBTMc/en3P1T4G7ge8CgHPY/FtgZuNvdP3P3p4B54YcpIiIiUtqUlBARESnMqwQJhQty2Od84AV3/3tRIhIREREpE0pKiIiIFCA2ZWM8cIyZ7Z5pezPrCxwW20dERESkqikpISJSxcxsXzP7i5m1zWLbMWY2vNl9rczsHDObaWYfm9lGM3MzW21mc81stJl1zDO2ejM7M4vtJpvZtSkea2NmI8zsr2a2Ihabm9laM5tvZuPNbNt84mtmGrACODeLbX8NLAaeCeG4IiIiImVNhS5FRKrbKoKr9icRFF5Mysx6ARcBFzd7aBIwDHgKuANYCWwkKAa5O8FJ+n/HikA25hjbbkDPLLbrCWyxNKeZGfAcMBB4OBbjSsCBrWP7nQz8xMy+5+6f5xjfN9x9vZlNBH5tZle4+xfJtjOzHYCfAyPdfWO+xxMRERGpFEpKiIhUMXd/18yeAi40sz+mWT1iOMEJ/d3xO8ysB0FC4iJ3H5dsJzO7GZhPkJwYE2Lo2fgxcARwjLs/nWwDM7sG+CcwEhhR4PHuiLUzDLgtxTZnAF8DfyzwWCIiIiIVQdM3RERkHNCH4AR+C2a2E3AacKu7r014qD0wi4RERXOxQo7PAYeGFWwODgf+QZppEu6+HJgKDC70YO7eQLDE5/lmtsX3a2wZ0HOBe919VaHHExEREakESkqIiMhLwCLgwhSPn08w5WFC4p3u/k93P8Td15hZrZl1M7MezW/A/wK7FjH+VHYFFqcZ/RG3mPDiuwXYk+RJjh8DPWj2OoqIiIhUM03fEBGpcu7uZjYOuMvM9nD39+KPmVkHgqv7d7v7f5rva2YHAGOBfYHWaQ7z73Cjzkon4PNYYiSTzmbWyt2/LvCYs4G3CBI5zzV77Hxghru/U+AxRERERCqGkhIiIgLwAHADwcoQFyTcfyZB0co/NN/BzHYEZgDvxvZbTlDksrmTgQNCjjdbP47dMvmKYDRIQWIJnluAKWb2bXf/J4CZ9SOYwnJ0occQERERqSRKSoiICO7eaGZ3EBS8vNzdV5lZG4IVN6a5e7KRDicRfI8MTrdyhZkdSHRJib+QXYHN5SGuhvEwMBo4jyBZQ+zne2w5ekJERESkqikpISIicbcTrEDxC4IpGScR1EC4KcX2vYD3slhKM9/vmtXANllsl6r9L4AN7v5UnsfPi7tviCV4LjGz3wFtCF7LS929qSVjERERESl1KnQpIiIAuPsy4CHg12bWGrgUeNrdF6bYZSPZfY8cmeL+9bGfW6V4/ENgl3QNm1l7YJ8UD38A7JwpODM7xszmZdouR3cQPK/TCKbAfAncG/IxRERERMqekhIiIpLoFmA3YCKwF3Bjmm3fA/Y0s67JHjSzGjMbRVAEM5kPYj/rUjz+F+AYM9szRfttgTuBdin2fwXYL1aMMykzqyWYorIy1Tb5iC01+hDBtI1fAX9099VhHkNERESkEmj6hoiIfMPd3zSzmQRX+F8HZqbZ/H7gcuA1M3sA+ISgWGQHoBtBUcc2wH0ERR6be4tgKdJHzOyPwFx3n57w+G3AWcBcM7uPIImxDtiWYAnPY4EFwF9TxPcn4FXgFTObBvyLYEqHE6wUsgNwFNAH+GGa55mv8cDQ2L+1DKiIiIhIEkpKiIhUnn8D7xew/3XAg8Bl7p5yRYpYMczDYtsPA7oDBqyJxfAgQcHHnxDUpmi+/9dm9kOCmhVnxvabnvD4ejPbF/gdMBg4kSDhsRL4B3AFwTSJu4ElSdp3MxtMMBLiOOBHBAkNCKZTLCdIjFzo7n/J/LLkxt3fMLPngRXu/m7Y7YuIiIhUAkvz96aIiIg0Y2YfAle6+70ht3tqrN1dw2xXREREpJSppoSIiIiIiIiIREJJCRERkdztYGa7mlnB0yDNrJWZ7UpQ40JERESkqigpISIikpuvCGplfEBQ16JQV8TaGh1rW0RERKRqqKaEiIhIDsysD9Az9t857v5pge3tCMSXLf23uy8spD0RERGRcqKkhIiIiIiIiIhEQtM3RERERERERCQSSkqIiIiIiIiISCSUlBARERERERGRSCgpISIiIiIiIiKRUFJCRERERERERCKhpISIiIiIiIiIREJJCRERERERERGJhJISIiIiIiIiIhIJJSVEREREREREJBL/P8Sy6hyRXng5AAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ssro_analysis = ReadoutCalibrationAnalysis(tuid=dh.get_latest_tuid())\n", "ssro_analysis.run().display_figs_mpl()" ] }, { "cell_type": "code", "execution_count": 38, "id": "ae379825", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:38.508346Z", "iopub.status.busy": "2024-11-13T02:36:38.508167Z", "iopub.status.idle": "2024-11-13T02:36:38.512152Z", "shell.execute_reply": "2024-11-13T02:36:38.511619Z" } }, "outputs": [], "source": [ "fit_results = ssro_analysis.fit_results[\"linear_discriminator\"].params\n", "acq_threshold = fit_results[\"acq_threshold\"].value\n", "acq_rotation = (np.rad2deg(fit_results[\"acq_rotation_rad\"].value)) % 360\n", "\n", "qubit.measure.acq_threshold(acq_threshold)\n", "qubit.measure.acq_rotation(acq_rotation)" ] }, { "cell_type": "markdown", "id": "8355987d", "metadata": {}, "source": [ "## SSRO with thresholded acquisition" ] }, { "cell_type": "code", "execution_count": 39, "id": "50c14c42", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:38.513922Z", "iopub.status.busy": "2024-11-13T02:36:38.513748Z", "iopub.status.idle": "2024-11-13T02:36:38.517672Z", "shell.execute_reply": "2024-11-13T02:36:38.517017Z" }, "lines_to_next_cell": 0 }, "outputs": [], "source": [ "disc_ssro_gettable_kwargs = dict(\n", " qubit=qubit.name, prepared_states=states, acq_protocol=\"ThresholdedAcquisition\"\n", ")\n", "\n", "# set gettable\n", "disc_ssro_gettable = ScheduleGettable(\n", " quantum_device,\n", " schedule_function=readout_calibration_sched,\n", " schedule_kwargs=disc_ssro_gettable_kwargs,\n", " real_imag=True,\n", " batched=True,\n", ")\n", "\n", "# set measurement control\n", "meas_ctrl.gettables(disc_ssro_gettable)" ] }, { "cell_type": "code", "execution_count": 40, "id": "495703dc", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:38.519406Z", "iopub.status.busy": "2024-11-13T02:36:38.519242Z", "iopub.status.idle": "2024-11-13T02:36:38.621650Z", "shell.execute_reply": "2024-11-13T02:36:38.620970Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t --- (None) --- \n", "Batched settable(s):\n", "\t states \n", "Batch size limit: 400\n", "\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "d34364376e6f450cb9f07a38c73b7216", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 480kB\n",
       "Dimensions:  (x0: 20000)\n",
       "Coordinates:\n",
       "  * x0       (x0) int64 160kB 0 1 0 1 0 1 0 1 0 1 0 1 ... 1 0 1 0 1 0 1 0 1 0 1\n",
       "Data variables:\n",
       "    y0       (x0) float64 160kB 0.0 1.0 0.0 1.0 0.0 1.0 ... 1.0 0.0 0.0 0.0 1.0\n",
       "    y1       (x0) float64 160kB nan nan nan nan nan nan ... nan nan nan nan nan\n",
       "Attributes:\n",
       "    tuid:                             20241113-023638-522-7a7579\n",
       "    name:                             Discriminated single shot readout exper...\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 480kB\n", "Dimensions: (x0: 20000)\n", "Coordinates:\n", " * x0 (x0) int64 160kB 0 1 0 1 0 1 0 1 0 1 0 1 ... 1 0 1 0 1 0 1 0 1 0 1\n", "Data variables:\n", " y0 (x0) float64 160kB 0.0 1.0 0.0 1.0 0.0 1.0 ... 1.0 0.0 0.0 0.0 1.0\n", " y1 (x0) float64 160kB nan nan nan nan nan nan ... nan nan nan nan nan\n", "Attributes:\n", " tuid: 20241113-023638-522-7a7579\n", " name: Discriminated single shot readout exper...\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "num_shots = 10_000\n", "state_setpoints = np.asarray([0, 1] * num_shots)\n", "\n", "# replace the get method for the gettable in case the cluster is a dummy\n", "if \"dummy\" in str(cluster._transport):\n", " from fake_data import get_fake_binary_ssro_data\n", "\n", " disc_ssro_gettable.get = partial(get_fake_binary_ssro_data, num_shots=num_shots)\n", "\n", "meas_ctrl.settables(states)\n", "meas_ctrl.setpoints(state_setpoints)\n", "\n", "disc_ssro_ds = dh.to_gridded_dataset(meas_ctrl.run(\"Discriminated single shot readout experiment\"))\n", "disc_ssro_ds" ] }, { "cell_type": "code", "execution_count": 41, "id": "dd774550", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:38.623662Z", "iopub.status.busy": "2024-11-13T02:36:38.623441Z", "iopub.status.idle": "2024-11-13T02:36:38.755146Z", "shell.execute_reply": "2024-11-13T02:36:38.754500Z" } }, "outputs": [ { "data": { "text/plain": [ "Text(0, 0.5, 'Prepared State')" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqMAAAJHCAYAAACkSl/8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABsJ0lEQVR4nO3dd3hUZdrH8d+kQ0gCCZBOCb0E6Yo0abLS1UWki4qAIogiItIsCOqia1ewoai7ulIUBAuKCqu+gDRRIZRACgmEkkIgZea8f7CMxCSTSSbDgeT7ua5zXeacp50JMXfu5zzPsRiGYQgAAAAwgYfZAwAAAEDlRTAKAAAA0xCMAgAAwDQEowAAADANwSgAAABMQzAKAAAA0xCMAgAAwDQEowAAADANwSgAAABMQzAKVAKbN2/WDTfcoPr166tGjRrKysoye0gAAEgiGAUc+vbbbzVo0CA1a9ZMfn5+slgs9iMkJETt2rXT/PnzlZmZafZQi/Xxxx+rS5cuSklJ0bBhw/Tss8/K39/f7GEpLy9PjRs3Vq1atZSSkmL2cJz29ddfKzw8XPv27StVvczMTLVs2VKvv/66m0ZWPt588015e3trzpw5Zg8FQCXhZfYAgMvVzJkz9dRTT6lDhw7q27evoqOj5evrK0kyDEPp6enau3evFi5cqJUrV2rr1q3y9vY2edQF2Ww2TZ8+XYMGDdLKlSvl4XH5/P159OhRxcXFSZL27dunsLAwk0fknMTERKWkpGjixInasGGDLBaLU/Xmzp2rPXv2KCEhodzHlJKSonXr1mncuHEut7V582bl5+dr8+bN5TAyACgZwShQhF27dunpp5/WokWLNGPGDIcBxwMPPKCOHTvqzTff1MSJEy/hKEt29OhRHTlyREuXLr2sAlFJioqK0oABA3Tq1Cm1atXK7OGU2rfffqv33ntPY8aMKbHsL7/8ohdeeMFtY/niiy90++23a/To0fLycu1/6zfeeKO2bNmiW265pZxGBwCOEYwCRXjttdcUExOjBx54oMTMV+vWrfW3v/1N27Ztu0Sjc158fLwkKTo62tyBFMHDw0OfffaZ2cMos1tvvVUPPPCA+vfvr5CQkGLLWa1WTZgwQa1atdLx48fdMhbDMMqtrYEDB2rgwIHl1h4AlOTySpUAl4mDBw+qY8eOTmeZ2rdvr9TUVDePqvTOnj0rSapSpYrJI6l4Fi9eLKvVqgcffNBhuVdffVW//PKLli5d6nLWEgAqIoJRoAhHjhxReHi40+UfeOABLVmypMhrBw8e1IgRI9S0aVP5+vraF0CFhobq2muv1euvvy6r1Vpk3bFjx2r27NnKzs7Wk08+qXbt2ql69er2BVQdO3bUwoULlZubW6BeVlaWgoKC1KdPH0lS/fr17f0GBQUVWE3fsGFDrV+/vsR77NGjh5YuXVrofHp6uu6++27VrVu3wAIvi8Uib29vNWrUSIsXLy4yezd//nyNHj26yP6sVquWLFmia6+9VqGhofY2fX191bRpU40YMUIHDhwosu5vv/2m0NBQnTx5Uv/973916623KioqSt7e3vYxDRkyRDt27CjxvotTu3ZtPfPMM3r77bf13XffFVkmOTlZjzzyiO699161b9/eYXvx8fGaNm2amjZtav8eWywWRUZGqlu3bvr4448LfYaPP/64LBaL/VlRb29ve73q1asX+D7//vvvql27tlJSUpSfn68lS5aoS5cuqlWrlq6++mp7udOnTyssLEy//vprgb5ef/113X777cVmYXNzc3XTTTfpk08+cXifAPBX/JkOFCE7O7tU2UR/f/8iV6jv2bNH7dq1U0hIiIYOHaqoqCj5+fnJMAydOHFC27dv18SJE/X999/r/fffL1T/8OHDSktLU8eOHXXixAkNGDBAgwcPVo0aNZSenq4//vhDc+fO1fr167Vx40b7IwX+/v566aWX9PPPP+vll1/W/Pnz7VPJQUFBBcZ64MABJSYmlniPhw4d0uHDhwudnzZtmv7zn/9owoQJio6OLvBs6tmzZ/Xjjz9q+vTpCg4OLrTAJj4+XocOHSqyv3Hjxum9997TwIED1adPH9WsWVMWi0U5OTlKSEjQf/7zH7Vo0UJbtmxRbGxsgbrHjh3TsWPHtGjRIj377LO67rrrNGLECIWGhsrDw0PJyclau3at2rVrp3Xr1un6668v8f6LG+M777yjiRMnaseOHfYFbhfcd999CgwM1OOPP+6wncTERHXu3Nke0NWrV0/VqlWTYRg6fvy4/vvf/+qWW27RI488oieeeMJeb+jQoapRo4Z++uknvf/++/rnP/8pT09PSVL16tULfJ9TU1N1/PhxxcfHa8SIEdqyZYv69eunbt26qVu3bvZyp0+fVmpqqlJSUtSyZUv7+aioKE2cOFHNmjUrMhs8bdo0rVmzRg8//HDpPkQAMAAUUrduXeORRx5xuZ0BAwYYjRo1MrKysoot8+abbxqSjJ9//rnQte7duxuSjPvvv9/Iy8srsv7GjRsNScbHH39c6NpXX31lSDIOHTpUbP+SjKVLl5Z4L0V9Jlar1fDx8TGeffZZh3UHDBhg9OnTp9D5sWPHGp07dy50fsuWLYYkY8mSJcW2mZWVZTRt2tTo169foWvffvutIcmIiIgwdu/eXWT9vLw8o3fv3kaLFi0Mm83mcPwXe/vttw1J9u/Hnj17DG9vb+Oxxx4rUO7zzz83JBmrVq2ynyvu39WCBQuMqlWrGomJiUX2abPZjFmzZhm+vr5GQkJCiWMqyoXPpFevXsbf//53IyUlpchyhw4dMiQZX331VaFr06dPNzw9PY0ffvihwPlly5YZkoxXX3212P4BoDhM0wNuYhiGvvvuO02aNMnhvp633XabQkJC9P333xd5vW7duvrHP/5R7POG3bt3V7t27bRx48byGHapHDt2TLm5uWrcuLHDco888oiGDh3qdLvff/+9qlevrttvv73YMv7+/po0aZK+++67YqeOFyxYUCC7dzEvLy9NnTpVe/bs0YkTJ5we2181b95cDz30kBYsWGDfezQ7O1t33323brzxRg0ePLjENnx9fXX//fcrMjKyyOsWi0X333+/cnJytGXLljKPVZKSkpK0bNkyhYaGlrruk08+qU6dOmnYsGE6duyYJGn79u2aMGGCbr/9dk2YMMGlsQGonJimB9zk9OnTyszMVL169RyW8/DwUN26dYudru7UqVOJK/od1Xen6tWrSzp/r45cc801uuaaa5xu9/Dhw6pTp459yrk49evX15kzZ5SWlqZatWoVut6pUyeH9evWrSvp/CMINWvWdHp8fzVr1ix9+OGHmjRpkr7++ms99thjOnHihNPbOT3wwAP2/87Kyiry8zQMQ1WqVLHvkFBWY8aMUdWqVctU19vbW//617/Upk0bjRw5Uh9++KFuvvlmtWzZUi+//LLTe64CwMUIRgE3SU9PlyQFBASUWDYgIMBe/q9KCsgu1DdjNb+fn586duyoxYsXq0GDBoqIiCjwzKinp6dq167t1D1cLD093enP7UL5ooLRkvq9uL4rqlSpoldffVXXX3+9Zs2apcWLF+vZZ59VVFSUU/WtVqtefPFFPfPMM0pOTnZY1tWxtmjRwqX6kZGR+uCDD3T99dcrNjZWVqtV3333nfz8/FxqF0DlRTAKwCWvvvqqbr755mKzkD4+Prrhhhv08ssvFzsNXRH06dNHI0eO1KJFi9ShQwfdfffdTtd96623dP/99+uuu+5S165dFRgYWGSWcezYsS6PMzAw0OU2evbsqTZt2uiXX37R888/f1nuYwvgykEwChShatWq9j06nZGZmanMzExFRES4cVSXp7Zt2+qPP/7Q77//rqSkpALPb1qtVh0+fFiLFi3ShAkTtGbNGhNH6n7PP/+8AgMDNXXq1FJlg1955RUNHz5cr732msNyl8t+sQsXLtT27dvVvHlzLVy4ULfccssV8zpXAJcfglGgCHXr1tXRo0edLv/cc89p69at+vTTT+3nLkwBX7zXY3EyMzMVFBRU+oGWg4CAAKfGmJ+fX+w1X19ftW7dWq1bty7yetWqVTVhwgTl5ubKx8en3MaUmZkpSaZ9dn8VEhKiV155pdT1Dh486FTWs7jvwYUFctnZ2eWS+XTkq6++0pw5czR//nyNHz9ebdq00fDhw/XVV1+xqT+AMmE1PVCEmJgYbdmyxWEAdrGtW7eqdu3aBc4FBwerWrVqJS44sdlsOnz4sOrXr1/W4bqkXr16OnLkiMMyhw4dUlJSUqHzKSkpevbZZ0t8HWV0dLRsNpvTr8O8MCabzVbiuPz9/V1afHQ58PT0LPFe9+zZU+xzwRcWySUkJJT30Ao4cuSIhg8frr59+2r27NkKDw/Xhx9+qO+//17z5s1za98AKi6CUaAIkyZN0sGDB4t9c9DFdu3apS+++EJt27YtcN5isahr16567bXXlJ2dXWz9ZcuW6cSJE+ratWu5jL20unfvrnfffVdpaWlFXk9PT9cdd9xR5LW4uDg98MAD2rlzp8M+4uLi5Onp6fR2Ql26dNGpU6f0zjvvFFsmOztbr776qrp163bFr+Ju2LBhsW9xkqQTJ07ozjvvLPZ606ZNVaNGDb300kvl+p76i+Xk5Gjo0KHy9/fX8uXL7QvVevTooccee0xPPvmk1q5d65a+AVRszKkARWjZsqUefvhhzZw5U5988ok6d+6sqKgo+xt2DMNQRkaG4uLi9O9//1uNGjUqMlh4+umn1b59ezVp0kRDhw5VZGSkfH19ZRiGTp48qR07dmjVqlUaMWJEgVcyXkpz5szRhx9+aH/FZnR0tHx8fHTixAnFxcXps88+06BBg4pcpNKxY0fVqVPHvp9mgwYNCgSGVqtViYmJWrJkiW655Ranp3GvvvpqjRw5UnfccYc+++wztW7dWsHBwbJYLMrNzVViYqI+/vhjHT9+XB999FG5fRZmmT59uoYNG6b+/furS5cuCggIkNVqVVpamvbt26fPPvtMf//734vNYAcEBOiJJ57QPffco927d+u6665T48aNNXr06HIL1KdPn67t27dr06ZN9rd5XfDwww9r8+bNGj16tHbu3MmCJgClY9p2+8AV4PvvvzcGDhxoNG3a1PD19TUk2Y/q1asbV111lTF79mzj9OnTxbYRFxdn3HrrrUbjxo0NHx8fe/1atWoZV199tfHKK68Y+fn5RdYdM2aMU2+CmjNnjjFy5MhC53ft2mXUrl3bOHXqlMP6qampxoQJE4wWLVoYVapUMSwWixESEmL07NnTePfddw2bzWZ07969yDci/fbbb0b//v2NkJCQAp+PJMPDw8OIjo42Jk6caJw8ebJQ3Xnz5hU5bsMwjPz8fOOVV14xrr76aqNWrVr2Nn18fIzGjRsbw4YNM+Li4oqsu2fPHqN27drGiRMnHN73qVOnjNq1axf7lqaifPnll0b9+vUNq9XqdJ0LrrvuuiI/Q5vNZnz44YdG+/btjaCgIEOSYbFYjJo1axq9e/c2li9fbthsNqNLly7GG2+8UWz769evN3r06GFERUUZNWrUMDIzM+3Xfv/9dyMkJMT47bffHI6xuM+kffv2Dt/UlZaWZrRo0cJYs2aNw/YB4K8shuGmOR0AAACgBDwzCgAAANMQjAIAAMA0BKMAAAAwDcEoAAAATEMwCgAAANMQjAIAAMA0lXLTe5vNpuTkZAUEBFzxb24BAOBKYBiGMjMzFRERYX+D1+Xi3Llzys3NdVv7Pj4+8vPzc1v7V7pKGYwmJyfzhhAAAEyQkJCgqKgos4dhd+7cOdWvW00px6xu6yMsLEyHDh0iIC1GpQxGAwICJEmHf6mnwGqX119nABy7sXGs2UMAUAb5ytMmfW7/HXy5yM3NVcoxqw5tq6vAgPKPCTIybarf7rByc3MJRotRKYPRC1PzgdU83PIPD4D7eFm8zR4CgLL43/seL9fH4wIDiAnMUimDUQAAgItZDZusbnhButWwlX+jFQx/AgAAAMA0ZEYBAEClZ5Mhm8o/NeqONisaMqMAAAAwDZlRAABQ6dlkkzue7nRPqxULmVEAAACYhswoAACo9KyGIatR/s93uqPNiobMKAAAAExDZhQAAFR6rKY3D5lRAAAAmIbMKAAAqPRsMmQlM2oKglEAAFDpMU1vHqbpAQAAYBoyowAAoNJjayfzkBkFAACAaciMAgCASs/2v8Md7cIxMqMAAAAwDZlRAABQ6VndtLWTO9qsaMiMAgAAwDRkRgEAQKVnNc4f7mgXjpEZBQAAgGnIjAIAgEqP1fTmITMKAAAA05AZBQAAlZ5NFlllcUu7cIzMKAAAAExDZhQAAFR6NuP84Y524RjBKAAAqPSsbpqmd0ebFQ3T9AAAADANmVEAAFDpkRk1D5lRAAAAmIbMKAAAqPRshkU2ww1bO7mhzYqGzCgAAABMQ2YUAABUejwzah4yowAAADANmVEAAFDpWeUhqxtydNZyb7HiITMKAAAA05AZBQAAlZ7hptX0BqvpS0RmFAAAAKYhMwoAACo9VtObh8woAAAATENmFAAAVHpWw0NWww2r6Y1yb7LCIRgFAACVnk0W2dwwYWwT0WhJmKYHAACAaciMAgCASo8FTOYhMwoAAADTkBkFAACVnvsWMPHMaEnIjAIAAMA0ZEYBAECld341ffk/3+mONisaMqMAAAAwDZlRAABQ6dnkISv7jJqCzCgAAABMQ2YUAABUeqymNw+ZUQAAAJiGzCgAAKj0bPLg3fQmIRgFAACVntWwyGq44XWgbmizomGaHgAAAKYhMwoAACo9q5u2drIyTV8iMqMAAAAwDZlRAABQ6dkMD9ncsLWTja2dSkRmFAAAAKYhMwoAACo9nhk1D5lRAAAAmIbMKAAAqPRscs+eoLZyb7HiITMKAAAA05AZBQAAlZ77XgdK3q8kfEIAAAAwDZlRAABQ6VkND1ndsM+oO9qsaPiEAAAAYBoyowAAoNKzySKb3LGavvzbrGgIRgEAQKXHNL15+IQAAABgGjKjAACg0nPf60DJ+5WETwgAAOAykpqaqvHjx6t+/foKCwuzH/Xr19fIkSOVkJBQoPzp06c1Y8YMxcbGKjw83F6+efPmmjRpklJTUwv1cfbsWS1cuFBt2rRRRESEvU7jxo01cuRIHThwoFCd/Px8LVmyRB06dFBkZKS9TkxMjAYPHqwdO3aU6X7JjAIAgErPZlhkc8frQMvQ5pgxY9S1a1f9/vvv8vPzs5/Pz8/Xu+++q5tvvlk//fSTPDw8ZLVa1atXLw0aNEgbN25UcHCwLJbzfaanp+udd95R586dtWvXLlWtWtXe1vDhwxUeHq41a9YoIiLCXufMmTP65JNP1KNHD/3000+KiIiw15k+fboSEhL04YcfKiYmRh4e53Oa586d01dffaUbb7xRK1euVOvWrUt1vwSjAAAAl4n09HT98ccfWr9+vT1AvMDLy0u333673nrrLe3du1fNmjXTypUrVa9ePc2bN69QW0FBQZo6daoOHDig119/XdOmTZMkbd26VYmJiVqxYoU9oLzA399fY8aMUVpamp566ik9//zzkqSjR49q1apV+v3331WlSpUCdfz8/DRw4EDl5eVp3rx5Wr16danumWl6AABQ6dn+98xoeR+lfR3osWPHFB4eXigQvVhUVJR9qn737t3q0aOHwzZ79+6t3bt327/evXu3rrvuukKBqKM6f/zxh9q3b18oEL1Yr169CtRxFsEoAADAZaJ+/fo6efKkbDZbsWUSEhIUExMjSUpMTFR4eLjDNiMiInTkyBH71+6qExQUpJMnTzosUxSCUQAAUOnZDA+3HZKUkZFR4MjJySlyHF5eXurYsaMeeeQRnTp1SoZh2K/l5OTovffeU3x8vD0YtVqt8vT0dHhvXl5eys/Pt3/trjplxTOjAAAAbhYdHV3g63nz5mn+/PlFlp09e7auueYaLVq0SMHBwfL29pZhGEpLS5O3t7e++eYbh1PsV5qKcycAAABlZJXFbYd0fmo9PT3dfjz88MNFjuP48eMaNGiQli5dqqysLJ04cUIpKSlKTU1VRkaG3nvvPS1atEi5ublF1t+7d69iYmK0b98+p+89PT1dDRs21MaNG0v1mbVp00bvv/9+qeoUhcwoAACAmwUGBiowMLDEcv/61780ePBgDR06tNA1f39/DR06VD///LM+/vhjjRw5slCZJk2a6ODBg6UaW1BQkPbv31+qOpK0ffv2UtcpCplRAABQ6bn7mVFn/fHHH2rVqpXDMrGxsdqyZYukws92FiU/P19eXn/mH91Vp6zIjAIAgErPKtmn1Mu73dK4OAAsjsVisQeGUVFRSklJcVg+OTlZderUsX8dFRWlX3/9tdR1SuonIyNDwcHBJQ2/EDKjAAAAl4mYmBj99ttvDsv89ttvql+/vqTzWdINGzY4LL9hwwbFxsbav46NjdW3337rcPuov9Zp2rSptm7dquzsbKfrOItgFAAAVHqXyzT9yJEj9eGHH+qLL76Q1Vowr2q1WrV+/XotX75cI0aMkCQNGTJEiYmJmjdvnk6cOFFgK6iMjAy9+OKLWrt2re666y77+Xbt2qlu3bqaNGmSkpKSCtTJzs7W8uXL9dxzz+mhhx6ynw8LC9NNN92kkSNHav/+/QUC2ZycHK1Zs0b3339/sTsEOMI0PQAAwGWiZs2aWr16tWbOnKk777xTeXl59mteXl5q0aKFVq5cad+A3tPTU19//bUWLFig7t27FwhIq1evru7du2vTpk3y9/cv0M8HH3yg5557Tv3791dqaqq9TkBAgDp06KBvv/22wHvpJemZZ57Rm2++qeHDhyspKckekFatWlUtW7bUihUr1KZNm1Lfs8W4OByuJDIyMhQUFKRT+2IUGEByGLiS9I1obfYQAJRBvpGnjVqt9PR0p1aVXyoXYoKHf/yb/Kp5l3v757LytLDT+svuvi8nRGIAAAAwDdP0AACg0jNkkc0Nq+kNN7RZ0ZAZBQAAgGnIjAIAgErPanjIWsqV7862C8f4hAAAAGAaMqMAAKDSsxkW2Yzyf77THW1WNGRGAQAAYBoyowAAoNKzykNWN+To3NFmRcMnBAAAANOQGQUAAJUez4yah2AUAABUejZ5yOaGCWN3tFnR8AkBAADANGRGAQBApWc1LLK6YUrdHW1WNGRGAQAAYBoyowAAoNJjAZN5yIwCAADANGRGAQBApWcYHrIZ5Z+jM9zQZkXDJwQAAADTkBkFAACVnlUWWeWG1fRuaLOiITMKAAAA05AZBQAAlZ7NcM/Kd5tR7k1WOASjuCz88UtVvftMmA7v85M1/8//Gfj42dSiwxmNm3lUtaPyJEnvPhOmlW/Ukq+frdj2ImNytHjl/kLnP3snRJvXVdeifx8ocUxWq7Tgrnq6bsgpdRuYXoa7AiBJHh6GHllyWBtXVdcPa6rbz3fpd1q3TD6mmmF5svxvns6wSadPeGnl0lr66qMa0kVTnFWrWTV6eoqu6ZMhP/+CP/9nMjy17v1grVhSSwZb6QBXFIJRmO54sreeuKuepv0jQa27ZsrT889r+XnSt6tqaO7YGL20fq+8vKUzmZ6a9FiSrh92slT9rFhSS6verCn/gOKD2Iu9+0yY/m9DoK65PqNU/QAoaMyDKerYK0M/fRloP9e8/RmNmZGiBXfV0+F9vro46AyNytVDLx9WxilP/fxVkP38xMeSdC7bQ5P6NNa5bM+Lu1Bw7TzNePGIzmR6av0HIW6/J1Q8NjetpndHmxXNFfMJnT59WjNmzFBsbKzCw8MVFhamsLAwNW/eXJMmTVJqaqrZQ0QZfbuyhvreelLtrisYiEqSl7fUZ+gphdfN0a8/VytzHyuW1NI3K2poztJ4p8r/d32gtmwIVJ9bShfwAiioU990deiV8b8s55+6Djit/7xWS4f3+Ul/WeCRmuij9/4Rpl43n7Kfs1gMXXN9hpY+FlEoEJWkk8e8tXxxKH88osxssrjtgGNXRDBqtVrVq1cv+fv7a+PGjUpOTlZKSopSUlL0448/qmnTpurcubOys7PNHirKICXBR1ENzjksExmTo6OHfcrcR1idHC381wEF1LCWWDbpoI9emxul2Uvj5ePHwz5AWUXUz9HEx5L0xPh6yj1X8NdN9Zr5OpniXWzdtKPeqhWRZ/+6Ru18pZ/wUl5u8b+2Dv1RRckHfV0fOIBL6ooIRleuXKl69epp3rx5CgkJkcXy518ZQUFBmjp1qvr166fXX3/dxFGirHLPeci3hKDP18/Q2SKyIc669m8ZCqheciB6LttDj4+vr0mPJyqiXm6Z+wMqO98qVs1ZGq9X50Tq6OHCAeKRfX4Fgs2/qhWRV+APUG9vQ3m5jjNMZzI8teSxiLIPGpWa1bC47YBjV8Qzo7t371aPHj0clundu7dWrVp1aQaEcuVbxaZzZx3/sOacs8j/z0fHtOvHatq8LkhH4vyUnekhi0Xy8DQUEpanPkNPqf/oNHmW8l+3YUj/fDBKHXtlqFNfpvqAsjN03zOJ+r8Ngfrpy6AiS/z3i0A98vphHfzdT3G7qspmtdjr1orM06gHUvT1x8GF6l1zfbr6jz6huk3Oydvn/B+x1nyLUhN89OnbIfru0+r667Q/gMvbFRGMJiYmqlWrVg7LRERE6MiRI5doRChPYXVylLDfz2GZhDg/BYdmSZKiGpzTD2uqa9g9x9S4dbaqBVllsZxf/Z6a4KPX5kYqO8tDt957rFTj+PStmjp5zFsPPs+/I8AVg25PU3DtfD0ztU6xZY7s89Ou/1bTC2v3K/ecRVkZ52c+fKvY5B9g06bPg7T+w4LBaO2IPHXpl64XZkYpLdnbvmre08tQ3SbndN/TCZKk7z4t+Hwq4AwWMJnnighGrVarPP+6suUvvLy8lJ+fX+S1nJwc5eTk2L/OyCDrdTnpedMpTe3fWI1aZatd90z5Vvlzyv5Mpoe+WVFD+3ZW1VVdzgejA8ee0MCxJwq14+kpRdTL1QPPHdE9fZuUKhjd83/++uT12np+7b5SZ1QB/Kl5hzO6ecJxTe3f6KJsZ2G3Tjmm4NA8jb2mqVITfOyBpcViKDQ6V+MeTlGHHpn6+es/V+B7+9n04sORyjlb8PeBNd+ig3uq6OVHojR+bjLBKHCFqRS/dhcuXKhHH33U7GGgGCGh+Xrs3YN67x9hWvJopM5ln/8r0uJxfouX9j0y1Hd44eCzOEEhVuXnWZR7zuLUAqSTx7y06J66mvnyYdWoVfQfNABKVqNWnma+fFiL7qmr02nFL06yWAwNGJOmib2aKPN0wV9DhmFRyhFfvTQrUotX7NfPXwfowrT78WSfQoHoxeL3+im8bk6x1wFHbLK4Z9N7Hhsp0RUZjO7du1c33HCD1q9fr8aNG5dY/uGHH9b9999v/zojI0PR0dHuHCJKKab5Oc17K77Y6+/9I6xU7fn4GsrN8ZCPn+NFS9Z86cmJ9XTjXcfVouOZUvUB4E8enoZmvXZYK5fU0m9b/B2WDaxhVW6OR6FA9GKZp7zkW8WQf6BNZ/43hZ97roRny896yK+qc/sIA7h8XJHBaJMmTXTw4EGny/v6+srXl+0+Lldf/jtY4fVyFHt18cFgbo5F1b3P/5J544lwjXkwRT6+xWc983It8vEt+ZfSni3+ittVRQn7ffXRS7ULXT+T6Skvb0M/rA3S4+8ecuJugMqpRYczatTqrKIb5uiWyYUfkfEPOD9j0bX/aT09pfhnSS9mGOefB5XO73Th6GdeOv/GtpyzPJ+HsjHctCeoQWa0RFdEMOroedAL8vPz5eV1RdwO/iL9pKfSjlZzGIwmx/uqVafzz4z+ttVfSQd9Vb9Z0XuTZp72lIen4dQUfatOZ7R6/+5ir//jvjq6tm+6rr2B14ECjuz+qZqGNIot9voDzx3Rf78I0o/rgyQZ8q1iU9UAq7Izi552rxpgVdUAqzJOnr+eftJTVQOs8vGzFdqz9II6jc7p6JGy70cMwBxXxJ+QUVFRSklJcVgmOTlZdeo499c2Li8de2Xoi38F68AePxl/iR+tVumHtUGK21VFsdecD1Y735Cut54M14mUwn98nDrupecfitINI5x/xhTApWbR+g+CNWVRogKDCycagoLzNeWpRH3572D9uU2TRRs+qaG7n0hSQPW/1jEUVidHEx9N1rr3eRUoysZmWNx2wLErIpUYGxur5cuXa/LkycWW2bBhg2Jji/+rHJevuo1zdM+CRD0/I1rHk3wKBKSeXoZiWpzVY+8esj8LNuTO47LmWzRjaENlZ3ray1ssUrUgq/rcclI3jj9eZF++frYif/kVxz/AKj//kjfLB+DYmUxPnTvzZ/7jg3+G6uYJx7V45X75B57fnk06PzWfnempb1dW10evFHx05t1nwvT3icf13Kf7VTWgYJ30NC99+nZNbfgPK+mBK43FMP6ai7r8WK1WXXPNNerXr5+mTJmi4OBg+1uYMjIytGzZMj3//PPauXOn/P0dPzh/oU5QUJBO7YtRYMAVkRwG8D99I1qbPQQAZZBv5GmjVis9PV2BgYElV7hELsQEN341Tt7+5f+YR96ZXK3s8/Zld9+XkysiEvP09NTXX3+ts2fPqnv37oqIiFBYWJjCwsLUsWNH/frrr9q0aZNTgSgAAAAuH1fENL10/h30Tz/9tJ5++mmzhwIAACoYdz3fyTOjJbtiglEAAAB3sblpayc2vS/ZFTFNDwAAgIqJzCgAAKj0mKY3D5lRAAAAmIbMKAAAqPTIjJqHzCgAAABMQ2YUAABUemRGzUNmFAAAAKYhMwoAACo9MqPmITMKAAAA05AZBQAAlZ4h97wtySj3FiseMqMAAAAwDZlRAABQ6fHMqHnIjAIAAMA0ZEYBAEClR2bUPASjAACg0iMYNQ/T9AAAADANmVEAAFDpkRk1D5lRAAAAmKbcMqMZGRk6fPiwjh8/Lj8/P11zzTXy8PBQfHy8wsLC5OfnV15dAQAAlCvDsMhwQxbTHW1WNC5nRjdv3qxOnTqpRo0aat26tXr37q2uXbtq48aNkqTrrrtOISEhmjt3rqtdAQAAoIJxKRj9448/1LNnT/n4+Oijjz7S1q1btXnzZhmGoXPnzkmSfvrpJz344INasGCB3nvvvXIZNAAAQHmyyeK2A465NE0/Z84cxcTEaMOGDfLyOt9UUlJSgTJhYWGaP3++tm7dqjfffFOjR492pUsAAABUIC5lRnft2qWBAwfaA1FHrr76au3bt8+V7gAAANziwmp6dxxwzKVg9NChQ4qMjHSqbFBQkI4fP+5KdwAAAKhgXJqmz8/Pl7e3t1NlPT09ZbPZXOkOAADALVhNbx6XV9M7G2ASiAIAAOCvXMqMRkZGKjU11amyJ06cUEREhCvdAQAAuAVvYDKPS8Fow4YNtXnzZqfKbtmyRQ0bNnSlOwAAALdgmt48Lk3TT506VRs3btTMmTOVlpZW4JrFcv7DP3funBYvXqz169drypQprnQHAACACsalzOiQIUM0b948PfXUU3rmmWfk7++vatWqSZLGjBkji8WiEydOyMfHR3PmzNGNN95YLoMGAAAoT4abpunJjJbM5XfTz5s3T3fddZd+/vlnxcfHKz093X4tICBA9evXV8eOHZ3eAgoAAACVh8vBqCSFh4dryJAh5dEUAADAJWdIMgz3tAvHXN7aCQAAACgrl4LRAwcOKC8vz6myubm5OnDggCvdAQAAuIVNFrcdcMylYLRVq1Zavny5U2WXLVumdu3audIdAAAAKhiXnhk9e/aszp4961TZgwcPKiQkxJXuAAAA3IJ9Rs1zSZ4ZtdlsWrdunZo3b34pugMAAMAVotSZ0UOHDsm4aLlZWlqaDh48WGTZ7OxsJSQk6JVXXtGvv/6qN954o+wjBQAAcBObYZGF14GaolTB6CuvvKLJkyfb364kSY8++qgeffTRYusYhqFGjRpp9erVat++fdlHCgAAgAqnVMHo2LFj1bJlSxmGIcMw1LNnT02ZMqXYPUb9/f1Vr1491axZszzGCgAA4BaG4aZ9RtlotESlCkb9/f3VrVu3AucaN26s7t27l+ugAAAAUDm4tJr+nXfeUe/evctrLAAAAKZgNb15XApGx4wZU17jAAAAMA3BqHl4HSgAAABM41Jm9IJt27Zp06ZNio+PV3p6erHl6tatq3nz5pVHlwAAAOWGrZ3M41IwarPZdNttt+n9999XQECAQkNDtX//fjVt2lTBwcHKz8/X9u3blZeXp/bt2ys/P7+8xg0AAIAKwKVp+qVLl2r58uV6/fXXdfLkSW3YsEGGYeiZZ57RDz/8oB9//FHJyckaOHCgAgMD9c4775TTsAEAAMrPha2d3HHAMZeC0WXLlmnw4MG688475eHhUWAz/AuCg4P1wQcfaOvWrVqyZIkr3QEAAKCCcSkYPXDggNq0aVNiuapVq2rw4MH64IMPXOkOAADALc5nMS1uOMy+s8ufS8Ho8ePHFRIS4lTZ+vXr67fffnOlOwAAAFQw5bKa3hnBwcE6derUpeoOAADAaewzah6XMqPBwcHKyMgodN4oIidd1POkAAAAKGjDhg3q0qWLIiMjFRYWZj+io6M1aNCgQjPNcXFxGjFihBo1amQvGxERobZt2+qpp55STk5OoT6OHj2qCRMmqFmzZgoPD1dYWJjCw8PVqlUrzZw5s8j47vTp05oxY4ZiY2PtdcLCwtS8eXNNmjRJqampZbpfl4LRyMhI7du3z/51zZo1JanIDOjp06ft1wEAAC4nhhuP0oiLi9Mdd9yhxYsXKzExUSkpKfYjPj5eo0aN0pAhQ+wBZmJionr16qUBAwZo586d9rJJSUlavXq1Dhw4oJEjRxboIysrS126dFFsbKz+7//+T0ePHlVKSoqSk5O1YcMGeXt7q3fv3rLZbPY6VqtVvXr1kr+/vzZu3Kjk5GR7Xz/++KOaNm2qzp07Kzs7u5R37GIwOmjQIK1cuVI7d+6UJPn6+qpBgwZav359obJffPGFmjZt6kp3AAAAFdrHH3+su+66S1dffXWhWWVPT0/dcsstio6O1p49eyRJixYt0oMPPqgRI0aoatWq9rIWi0XR0dF67bXXtH//fm3fvt1+7bXXXtOQIUM0efJkBQQEFKhTq1YtPf744woLC9Pq1avt11auXKl69epp3rx5CgkJKTC2oKAgTZ06Vf369dPrr79e6nt2KRidOnWqoqKi1LZtW915552SpLlz5+qDDz5Q165ddf/99+u+++5Tu3bttHnzZs2dO9eV7gAAANzCPSvpS/8canx8vBo0aOCwzJAhQ+ThcT6E2717t3r06FFsWQ8PD/Xs2VO7d++2nyupjiT17t3b5TrOcmkBU82aNfXjjz9qzZo19g9l9OjRCgsL06uvvqpvvvlGnp6eatiwoV555RVdffXVrnQHAADgHmWZU3e23VLIzc2Vr6+vwzL33nuv/b8TExMVHh7usHxERISOHDlS6jq7du0qUKdVq1al6sdZLq+mDwgI0PDhwwuc69Onj/r06eNq0wAAABXCXxcE+fr6Fht0nj59Wvfee682bdqko0eP2s+HhISoc+fOmj9/viIiIiSdf5bT09PTYd9eXl4FXsl+qeo4y6VpegAAgArBXVP0/5umj46OVlBQkP1YuHBhsUNZtGiRrr/+em3evNm+SOjo0aPavHmzWrRoob/97W9lCvouVwSjAAAAbpaQkKD09HT78fDDDxdbdtiwYRo4cGChBUnVq1e3r9f5/vvvi6y7fPlyp96OebGNGzeqYcOGRW7nVJy9e/cqJiamwK5KZeVSMNqkSRN99tlnTpVdvXq1mjRp4kp3AAAAbnH+daDuOSQpMDCwwOHoudCSdh9q2bKlDhw4UOS1UaNGFVg574zrrrtO+/fvV2BgoNN1mjRpooMHD6px48al6qsoLgWjcXFxSkhIcKrs9u3blZWV5Up3AAAAFV6VKlUcXq9atarOnDkjybnnNPPz8+Xl9ecyoUtVx1mXbJp+69atiomJuVTdAQAAOO1y2drJ399f586dc1jm7Nmz9in8qKgopaSkOCyfnJysOnXq2L++VHWc5XIwWtJrPs+ePatnnnlG69at0z333ONqdwAAABVWTEyM4uLiHJb5/fff7Qm+2NhYbdiwodiyNptN3377rWJjY+3nSqojnX8lqat1nFWqXOqKFSs0bdq0Au+ef+SRR4pdEZadna1Tp07J09NT06dP16233lrqAQIAALjdRSvfy73dUhgxYoQ6d+6srl27qlu3bvZ93CUpLy9Py5cvV1xcnLp27SpJmjlzpjp16qSaNWvqxhtvtGdMDcNQcnKyHn30UcXExBRY1DRx4kS1atVKMTExuu222+xvYTIMQydPntTzzz+v5ORkDR482F5nyJAhWrRokebNm6cpU6YoODjYnpDMyMjQsmXLtHbtWvtbOUujVMFobGys7rjjDhmGIcMw9Nhjj6lTp07q2LFjkeX9/f1Vr149dejQQXXr1i314AAAACqT8PBwffzxx5o1a5ZGjx6tvLw8+zVfX1916tRJa9eutS+AioyM1DfffKM5c+Zo/vz5yszMlHR+5jo0NFS33nqrXnjhhQJ9+Pv7a/PmzZo3b546dOig9PR0GYYhi8WikJAQ9e/fXxs2bCgQCHt6eurrr7/WggUL1L17d504ccKenKxevbq6d++uTZs2yd/fv9T3bDEuTnOWkoeHh1566SXdfffdZW3CFBkZGQoKCtKpfTEKDGB3K+BK0jeitdlDAFAG+UaeNmq10tPTS7Vq290uxAR135gjj6p+5d6+LfucDt/5+GV335cTlyKx22+/nVd8AgAAoMxceh3oG2+8UV7jAAAAMM9l8m76yog5agAAAJim1JnRvLw8xcfHy2azFflGpcTERG3btk2HDh2Sl5eX6tWrp44dO6p27drlMmAAAIDyVpY9QZ1tF46VKhhdvHixHn30UZ05c0ahoaFKTk62X7PZbHrwwQf18ssvKzc3V0FBQbJarcrKypK/v79mz56thx56qNxvAAAAoFwwpW4Kp6fpP/roIz344IMaO3asfvjhB+3Zs6fA9SVLluif//ynnnrqKWVkZOjUqVPKyMhQWlqapkyZolmzZunzzz8v9xsAAADAlcvprZ06d+4sf39/ffnll0Veb9y4sbp161bsoqbevXvLMIwSd++/FNjaCbhysbUTcGW63Ld2in59njyquGFrp7PnlDDh0cvuvi8nTkdiBw4cUJcuXYq8lp+fr0OHDunaa68ttv61115b4uutAAAAULk4/czosWPHFBISUuw1q9XqcJFSrVq1lJSUVPoRAgAAuBtbO5mmVHPUF95B+lcXZvovfm1UoY4cXAMAAEDl5NKm9wAAABWD5X+HO9qFI6VKVxa31smF19sDAACgEnM6MxoSEqL09PQir2VkZMhisSg4OLjY+tnZ2apSpUrpRwgAAOBuPDNqGqczow0aNNDOnTuLvHbhfIMGDYqtf/jwYdWvX7+UwwMAAEBF5nQwOnbsWH3yySd68803lZ+fbz//008/afbs2frb3/6mWrVqFVk3MTFR77//vq677jqXBwwAAFDuDDcecMjpafoJEyZo27ZtGj9+vCZMmGCfts/Ly1OHDh30yiuvFCifkJCgV199VYcOHdKaNWsUFBSk+fPnl/f4AQAAcAVzOhj18PDQG2+8oQceeEDbt29XQkKCQkJC1KhRI3Xr1q3Qtk/79+/XZ599pqioKE2bNk0PPvigAgICyv0GAAAAXGZYzh/uaBcOlXprp2bNmqlZs2YlluvRo4d2795dpkEBAABcSoZx/nBHu3CMnegBAABgGja9BwAAYGsn05AZBQAAgGnIjAIAALCAyTRkRgEAAGAaMqMAAKDSsxjnD3e0C8fIjAIAAMA0ZEYBAABYTW8aMqMAAAAwjVOZ0dOnT+vkyZMudxYcHKzq1au73A4AAEC5YjW9aZwKRps0aaK0tDSXO6tdu7aOHj3qcjsAAACoGJwKRjdu3Khjx44VOGcYhnr27KmpU6dqyJAhRdYzDEM7d+7UU089pU6dOumJJ55wecAAAADljmdGTeNUMNqsWTM1a9asyGuNGjVS9+7di6173XXXqVu3bmrfvr0mTZpUbDsAAACofC7JAqY2bdqoa9euevnlly9FdwAAAKVjuPGAQ5dsNf3VV1+tn3/++VJ1BwAA4DyCUdNcsmC0du3aOnHixKXqDgAAAFcAlze9NwznQn5fX1/l5+e72h0AAED5Y2sn07iUGQ0NDXV6y6dTp06pVq1arnQHAACACsalzGiDBg20c+dOp8ru2LFDDRo0cKU7AAAAt7AY5w93tAvHXMqMjhs3TqtXr9ayZcscTte/8847WrVqlcaNG+dKdwAAAKhgXMqM3n777dq0aZPGjRun6dOnKzo6WtWqVbNfz8rK0pEjR3Ty5EmNHTtWd955p8sDBgAAKHdsem8al4JRi8Wit99+W1OmTNF3332n+Ph4paen268HBQWpXr166tatm9q2bevyYAEAAFCxuLyaXjq/qX2bNm3KoykAAABUIpdsn1EAAADgr8olMwoAAHAls8hNq+nLv8kKp1yD0YyMDKWlpcnPz08RERGSpJycHPn6+pZnN+Xmxsax8rJ4mz0MAKXwRfIOs4cAoAwyMm2q0djsUeBy5PI0/cGDBzV8+HCFhISoRo0aatSokaKjo7Vp0yZJUuPGjRUTE6O33nrL5cECAAC4xYU3MLnjgEMuZUaTkpLUunVrhYaGatasWYqJiVFeXp5uvfVWZWRkSJJWrVqlF154QePHj1ft2rU1YMCAchk4AAAArnwuBaOzZ89WUFCQduzYIX9/f0nnA9SLtWnTRm+//bYOHjyol19+mWAUAABcfthn1DQuTdNv2bJFQ4cOtQeijvTo0UO//vqrK90BAAC4h+HGAw65FIweOHBA0dHRTpWtUaOGUlNTXekOAAAAFYxL0/SlWSnv5eUlq9XqSncAAABuYTHctLUTmdESubya3jCc+5SdLQcAAIDKw6XMaGhoqNLS0pwqe/r0adWqVcuV7gAAANyDBUymcSkz2qBBA23fvt2psrt371aDBg1c6Q4AAAAVjEvB6Lhx4/Tpp5/qtddeK/Q8qMXy5yavn3zyiT755BONGzfOle4AAADcg9X0pnFpmv7222/Xpk2bdPfdd+vhhx9WdHS0qlSpIkl68MEHNW/ePCUkJOjYsWMaPXq07rjjjnIZNAAAACoGl4JRi8Wit99+W1OmTNF3332n+Ph4paenq3nz5pKkgIAADR8+XF27dlX79u3LZcAAAADljdX05nEpGL2gTZs2atOmTXk0BQAAgEqkXIJRAACAK5phOX+4o1045NICpltvvVU//fRTeY0FAAAAlYxLwehXX32l9evXl9dYAAAAzMFqetO4NE3foEEDHThwoLzGAgAAYAoWMJnHpczosGHD9OWXXyorK6u8xgMAAIBKxKVgdNKkSQoLC9OsWbPKazwAAACXHtP0pnFpmt7X11crVqzQxIkT1bt3b911111q3ry5AgMDiyxfvXr1Yq8BAACg8nEpGI2JiVFiYqIM43zY/+233zosX6tWLaWkpLjSJQAAQPlz0zOjZEZL5lIw+tZbbykxMdHp8lFRUa50BwAAgArGpWC0V69e5TUOAAAA87jr+U4yoyVyaQETAAAA4ApeBwoAAEBm1DRkRgEAAGAalzOjOTk5evnll/XDDz8oPj5e6enpxZatX7++NmzY4GqXAAAA5Yo3MJnHpcxoZmamYmNjNXPmTFmtVl111VWKj49Xx44dNXLkSA0bNkwhISGKj49X165ddeutt5bXuAEAAFABuJQZffzxx5WcnKydO3eqWbNmSkxM1LvvvqsxY8aoX79+kqSFCxdq4cKFeuWVV/T888+Xy6ABAABQMbiUGf366681YsQINWvWTJJksViKLDdz5kx5e3vrH//4hyvdAQAAoIJxKRg9cOCAGjRoUGI5i8Wi/v3769NPP3WlOwAAAPfg3fSmcWmaPjMzUwEBAU6VjYiI0OHDh13pDgAAwC1YwGQelzKjHh4eslqtTpUNCAhQVlaWK90BAACggnEpM1q7dm2dPn3a/rWHx/nYtqgA1TCMYp8pBQAAMB1ZTFO4lBlt0KCBtm7dav86NDRU3t7eSk1NLVQ2NTVVkZGRrnQHAACACsalYHT48OFas2aNXnzxRWVnZ8vDw0Pt2rXT0qVLlZGRYS+XmpqqDz74QFdffbXLAwYAACh3LGAyjUvB6IQJEzRq1ChNnTpVf/vb3yRJzz33nPbt26eoqCi1bdtWrVu3Vv369XX27Fk9+eST5TJoAAAAVAwuPTPq6empZcuW6cknn9SZM2ckSVdffbXi4uL0/vvv69ChQ/L09NSECRM0cuRIBQYGlsugAQAAyhOr6c3j8rvpJRV6FrRmzZqaOnVqeTQNAACACqxcglEAAIArmrue7yQzWiKXnhkFAAAAXFFumdGTJ0/q0KFDSk9Pt58LCgpS/fr1FRwcXF7dAAAAlDueGTWPy8Hol19+qQceeEC//fabpPOb21/MYrGoefPmevbZZ9WnTx9XuwMAAEAF4tI0/Y4dO9SvXz+Fh4dr9erV2rlzpw4dOmQ/du3apVWrViksLEw33HCDdu7cWV7jBgAAKD/sM2oalzKj8+fPV9OmTbVu3Tp5enoWWaZly5bq16+frrrqKs2fP18rV650pUsAAIDyxwIm07iUGd2zZ4/69+9fbCB6gaenpwYMGKBff/3Vle4AAABQwbiUGT18+LAiIiKcKhseHq7Dhw+70h0AAIBbsIDJPC5lRq1Wqzw8nGvCy8tLVqvVle4AAAAqLavVqptuukkff/xxgfMbNmxQ7969Va9ePYWFhSksLEzR0dHq2rWrVqxYUWhxuSRt27ZNgwYNUkxMjL1OZGSkOnbsqDfeeKPImC0uLk4jRoxQo0aN7HUiIiLUtm1bPfXUU8rJySnTfbkUjAYHB+v48eOuNAEAAGC+K2AB09y5c7V27Vr7K9gladWqVZo2bZrmz5+vuLg4paSkKCUlRYcOHdLzzz+v5557Ti+//HKBdrZt26ahQ4dq4sSJ+v333+11EhIS9N5772nNmjV66KGHCtRJTExUr169NGDAAO3cudNeJykpSatXr9aBAwc0cuTIMt2XS8Fos2bNFBcX50oTAAAAKMHq1av1+eef67bbbitwfvbs2Vq+fLm6dOkib29v+3kvLy+1bdtW//rXv7Rw4cICmc558+bp+eefV79+/eTr62s/7+HhoSZNmuj999/Xxx9/rNTUVPu1RYsW6cEHH9SIESNUtWpV+3mLxaLo6Gi99tpr2r9/v7Zv317qe3MpGB02bJjWrFmjzMxMV5oBAAAw12WcGY2Li9PUqVP1n//8R1WqVLGfz8vLU1pamlq1alVs3cjISIWGhiopKcl+bvfu3erRo0exdfz9/dWuXTvt3bvX6ToeHh7q2bOndu/e7ext/Vm31DUuMmHCBHXp0kWDBw9mcRIAAEAxMjIyChzOPl955swZ3XzzzXrhhRfUoEGDAtdSUlJUq1atEtuIiIjQkSNH7F+np6erWrVqpaqTmJio8PDwUtVxlkur6Xv16qV9+/YpNTXV/gBscds8ZWVlyTAM1alTp8D5evXq6fvvv3dlGAAAAC5x92r66OjoAufnzZun+fPnO6xrGIbuuusu9e/fX4MGDSp03Wq1lri9pnR+yj4/P9/pMRdVx5m+ytKP5GIwOnbsWCUkJLjSRKFvDgAAQEWTkJCgwMBA+9cXP6tZnJdeeklHjx7VsmXL3Dk007kUjN5+++3lNQ4AAADzuPkNTIGBgQWC0ZJs3rxZixcv1s8//ywvL+fDtXvuuUeSCq2gd2TRokX673//q08//dTpOsuXL9fixYvLtGDpr1wKRgEAAFC+UlJSNGLECH3wwQcKDQ0tVd3SBKEXzJw5s9R1Ro0apVGjRpW6XlEIRgEAQKV3ubyBKT8/X8OGDdO0adPUuXNnh2WdfUYzPz+/VNnVouo401dZ+pEIRgEAAC4bmzdv1rZt2/THH39o0aJFha6np6fLx8dH//nPf7Rq1SqlpaWV2GZycnKBBeTVq1dXVlaWwxX1f60TFRWllJQU1axZ02Gd1q1blziev3Jpayfp/Oqq119/XTfffLPatWunOnXqqEmTJvr9998lSQMHDtQdd9yhHTt2uNoVAACAe1wm+4x2795dWVlZSk1Ntb/l6OJj2LBhWrZsmdasWSMvLy/VqlXLYYyVnJys1NRURUZG2s/FxsZqw4YNxdY5c+aMtm3bpiZNmjhdx2az6dtvv1VsbGzpblguBqPnzp1Tu3btdM899yg3N1ddunTRzTffrP379+vQoUOSpH79+umnn35St27dtGvXLle6AwAAcI/LJBgtrQULFmj06NHatGmT8vLy7OetVqt27NihYcOGaebMmQW2ZXrsscd03333ae3atQX2O7XZbNq/f79GjRqlv//97wWeV505c6YWL16s999/X9nZ2fbzhmEoKSlJEydOVExMjNq0aVPqe3Bpmv7JJ59UXFycdu7cqRYtWkiSkpKS9Pzzz9vLTJo0SWPHjlWbNm307LPP6p133nGlSwAAgEorKCiowPT6oEGDVK1aNfu76S8El97e3qpbt66mTZumm266qUAbbdq00YoVKzRv3jzde++99uDSw8NDkZGRGj9+vO64444CdSIjI/XNN99ozpw5mj9/vv3tmxaLRaGhobr11lv1wgsvlOmeXApG161bpxEjRtgD0eJUrVpVgwcP1ooVK1zpDgAAwC0s/zvc0W55ujjhd0HPnj3Vs2fPUrXTpk2bUm3lJEkNGzbUhx9+WKo6znBpmj4uLk4NGzZ0qmxYWJiOHj3qSncAAACoYFzKjGZkZCggIMCpsr6+vjp37pwr3QEAALiHmze9R/FcXk0PAAAAlJVLmdGAgAD7A6wlycrKcjqLCgAAcCldLpveV0YuZUYbNmyouLg4p8oePnxYMTExrnQHAACACsalYPT666/XBx98oF9//dVhucOHD+v9999X3759XekOAADAPa7QfUYrApem6WfPnq2VK1eqTZs26tu3r2JiYuThcT6+fe+997Rx40YlJCTos88+U2RkpGbPnl0ugwYAAEDF4FJm1N/fX7t27dLTTz8tLy8vff/991q9erXq1q2rn376SevXr1d2drYeffRR7dq1S/7+/uU1bgAAgPJFVtQULmVGJcnHx0fTpk3TtGnTymM8AAAAqERcDkYBAACudKymN49L0/Svvvqqjhw5Ul5jAQAAMAcLmEzjUjD64IMPuuUdpQAAAKgcXJqmj46O1oEDB8prLAAAAKZgmt48LmVG+/fvr82bN8sw+KQBAABQei4Fo1OmTFFqaqqWLVtWXuMBAAC49Hhm1DQuTdPXqVNHq1ev1pgxY5SQkKC77rpLoaGh5TU2AAAAVHAuBaO33HKL4uPj5e3trXnz5mn+/PmqUaOGAgMDiywfExOjr7/+2pUuAQAAyh3PjJrHpWC0ZcuW9rcqderUqcTy9evXd6U7AAAAVDAuBaNz584tr3EAAACYx13Pd5IZLZFLC5gAAAAAV7iUGTUMQxaLpbzGAgAAYA4yo6YpVWY0LS1NkydPVsuWLVWlShV5e3urfv36GjRokH755Rd3jREAAAAVlNOZ0bS0NLVs2VL5+fm67bbb1KBBA/n4+Cg5OVmffvqpOnbsqJUrV2rgwIHuHC8AAEC5YzW9eZwORufMmaP8/Hz99ttvql27doFrs2fP1k033aTJkydrwIABTN0DAADAKU5P02/atEkjRowoFIhKksVi0ZQpU5SYmKj4+PjyHB8AAID78QYm0zgdjMbFxTncJ7RevXoyDEMHDhwol4EBAABcKhbDcNsBx5wORnNzc+Xr61vsdR8fH3s5AAAAwBkube0EAABQIbC1k2nY9B4AAACmITMKAAAqPbZ2Mk+pMqPObNnEtk4AAABwVqkyo4888ogWLlxY5LX8/HxJ0pgxY1SlSpUiyzRs2FDffPNNKYcIAADgZjwzahqng9G33npLhw8fdqmzOnXquFQfAAAAFYvTwehtt93mxmEAAACYh2dGzcNqegAAAJiG1fQAAAA8M2oaMqMAAAAwDZlRAABQ6fHMqHnIjAIAAMA0ZEYBAAB4ZtQ0BKMAAABiSt0sTNMDAADANGRGAQAADOP84Y524RCZUQAAAJiGzCgAAKj02NrJPGRGAQAAYBoyowAAAGztZBoyowAAADANmVEAAFDpWWznD3e0C8cIRnHF8PAw9MiSw9q4qrp+WFNdklS1mlWjp6fomj4Z8vMv+BN/JsNT694P1ooltWQYFvv5Jm3OaNzMFEU3PCdPrz933TiX7aFtGwO07OkwZZ7mRwMozh+/VNW7z4Tp8D4/WfP//Nny8bOpRYczGjfzqGpH5UmS3n0mTCvfqCVfv+J/I0fG5Gjxyv32r08d99KbC8K1c3OA8nL/bN/bx1DTtmd0+6yjCq+bW6CNU8e99M5T4dr+QzXlnvtz0s/Hz6bm7c/XqR2Z5/K9Ayh//MbFFWPMgynq2CtDP30ZaD838bEkncv20KQ+jXUu27NA+eDaeZrx4hGdyfTU+g9CJEkBNfI1e8lhLZ4WrR2bqkm66Bedr03DJh/Tfc8k6vHx9S7FLQFXnOPJ3nrirnqa9o8Ete6aKc+Lfuzy86RvV9XQ3LExemn9Xnl5S2cyPTXpsSRdP+yk030snlZHzdqd0ZSnfpeP758P3FnzpQ2fBOvR2+vb27/gmSl11PLqM3rjuz/k41ewztcfB+vx8fX0/Jo4efBwGorDM6OmqRA/lllZWerfv7+WLl1q9lDgJp36pqtDrwx99VEN+zmLxdA112do6WMRhQJRSTp5zFvLF4fqmusz7OeatM7Wni3+2rEpQBcHopKUl+Oh958NVdO2Z+RbhXkVoCjfrqyhvreeVLvrCgaikuTlLfUZekrhdXP068/VytS+NV/au72qRtyXWiAQlSRPL+n6YSdVNcCqhP1+9vNnMjyUsN9Pw6emFghEL9TpO/ykvL0NJR7wLdOYALjXFR+MZmRk6IYbbtCePXt05swZs4cDN4ion6OJjyXpifH1Cky/1aidr/QTXsrLLf6f8aE/qij54J+/gI4n+ejLfwcXW94wLDqR4q2a4UznAUVJSfBRVINzDstExuTo6GGfMrVv8ZCm/SNBFkvxZWqG5enU8T8n9k6neSk4NM9xnfA8HU8q25hQOVzYZ9QdBxy7oqfpz549q+uvv179+vWTzUYmqyLyrWLVnKXxenVOpI4eLpjV8PY2CjxPVpQzGZ5a8liE/evD+/x0eJ9fseW9fW2qHZWnY0nexZYBKrPccx7y9XP829XXz9DZImYrnOHhIV17Q7rDMmkp3mrQ4qz967A6uco87SmbTcVOwx9P9lZY3ZwyjQmVBK8DNc0VHYwahqH7779ft9xyi+bPn2/2cFDuDN33TKL+b0OgfvoyqNhS11yfrv6jT6huk3Py9jn/Q2/Ntyg1wUefvh2i7z6trr9OyRfF29emqU8l6oc1QcrLueInDQC38K1i07mzjn+ecs5Z5H/Rj+yuH6tp87ogHYnzU3amhywWycPTUEhYnvoMPaX+o9Pk6cRvo5yzFn33aQ0FVLcqKMRqP+/pdf4RnHcWhWvo3cdULchqz5Lm5lj0/WfVlZroU2jRE4DLwxUdjFatWlW33HKL2cOAmwy6PU3BtfP1zNQ6xZapHZGnLv3S9cLMKKUle9tXzXt6Garb5JzuezpBkvTdpzWKbUOSmrU7oweeS9DeHVULZFIBFBRWJ6fA85pFSYjzU3BoliQpqsE5/bCmuobdc0yNW2fbA0WrVUpN8NFrcyOVneWhW+89VmRbCybU1e6fqskwpNNp3qoZnqt/fhZXqNzwqam6b2Bj/fulUAXUyJeXlyHDkDJOesnT29BTH+1n8RIc4nWg5rmig1Fn5eTkKCfnz+mZjIwMB6VxOWje4YxunnBcU/s3ks1afBbG28+mFx+OVM7ZglOC1nyLDu6popcfidL4ucnFBqP+gVaNnXFUV/fJ0JtPROj7z4LkTBYVqKx63nRKU/s3VqNW2WrXPVO+Vf78TXsm00PfrKihfTur6qou54PRgWNPaODYE4Xa8fSUIurl6oHnjuievk2KDUYfef2w/b/PZXvol+8CNH9cfS388IACg89nR0+f8NT8cfV13zNH1LFXpvyq2grU+b8NAfropVDNXhpvnz0BcPmoFH8nLly4UEFBQfYjOjra7CHBgRq18jTz5cN6anJdnU5z/Ozm8WSfQoHoxeL3+im8mOfEOt9wWq9+vVdnszx113VN9P1n1UUgCjgWEpqvx949qK8+CtaEnk1161UtdOtVLTS8TQs9MqKB0k94qe/wwsFncYJCrMrPsyj3XMk/e35Vbbr2hnR1uj5dX1y0EPG7VTXU6foMdRuYXiAQvVCn28B0Rcbk2PcnBopkuPGAQ5UiM/rwww/r/vvvt3+dkZFBQHqZ8vA0NOu1w1q5pJZ+2+JfYvmSfoHlnPUo9MtJMjRyWqq6DUzXIyNiSpxyBFBQTPNzmvdWfLHX3/tHWKna8/E1lJvjIR8/a8mF/9f/pnV/PpSasN9XTdtlO6xTv9lZ7d1RVT1vOlWqsQFwv0oRjPr6+srXl/3lrgQtOpxRo1ZnFd0wR7dMLjxt5x9wPovStf9pLZ5Wp9A+hH/l42dTztmCEwDdB5/WNddnaEr/hg6zqgAK+/LfwQqvl6PYq4vfSi83x6Lq3uf/CHzjiXCNeTDF4c9qXq5FPr7ny3/6dk35+tnUd3jxm+RbPIwCz386s/hJlvN7mALF4ZlR81SKYBRXjt0/VdOQRrHFXn/guSP67xdB+nF9kCRDVQOs8vGzFdh/9GJ1Gp3T0SMX7y1oaPyco3pkRAyBKFAG6Sc9lXa0msNgNDneV606nX9m9Let/ko66Kv6zYremzTztKc8PA37ZvVVA6z6Y1tV9R1e/BgO7yv4+E1Y3RwdcbBlmyQd2eensDqspgcuR5XimVFUVBZt+KSG7n4iSQHV/5ryMBRWJ0cTH03WuvdD7GeDQvJlzbc43GsUQPE69srQF/8K1oE9foW2T7RapR/WBiluVxXFXnM+WO18Q7reejJcJ1IK5z5OHffS8w9F6YYRfz5j2v66TP30VZC2bgzQX7ePttmkHZur6fPlIQVeL9rzxlPauKqGtm4MkPUvM/1Wq7Tl2wB9s6KGetzIFD0cuLDPqDsOOERmFFeUM5meOnfmz7+h3n0mTH+feFzPfbpfVQP+3FvQMKT0NC99+nZNbfjPnyvpq4dYFVw7Tx/u2OOwn+dnRDnc2xSorOo2ztE9CxL1/IxoHU/yKfB71tPLUEyLs3rs3UP2Z7WH3Hlc1nyLZgxtqOxMT3t5i0WqFmRVn1tO6sbxx+1tVK+Zr3lvHdLbi8L13APRsuZbCrQf3TBHj7wer1oRf74lLSjEqnlvH9RbT0YUWadu43Oa++YhhYQyTw9cjiyGUTFC9vnz56t69eq67777SiybkZGhoKAgXafB8rLwph3gSvJF8g6zhwCgDDIybarR+KDS09MVGBho9nDsLsQEnW54TF7e5T9rlp93Tj+um3vZ3fflpMJM0wcGBiogIMDsYQAAAKAUKsw0/cVbNwEAAJSKu/YErRDzz+5VYTKjAAAAuPJUmMwoAABAWbHPqHkIRgEAAGzG+cMd7cIhpukBAABgGjKjAAAALGAyDZlRAAAAmIbMKAAAqPQsctMCpvJvssIhMwoAAADTkBkFAAAwjPOHO9qFQ2RGAQAAYBoyowAAoNJj03vzkBkFAACAaciMAgAAsM+oaciMAgAAwDRkRgEAQKVnMQxZ3LDy3R1tVjQEowAAALb/He5oFw4xTQ8AAADTkBkFAACVHtP05iEzCgAAANOQGQUAAGBrJ9OQGQUAAIBpyIwCAAAYxvnDHe3CITKjAAAAMA2ZUQAAUOlZjPOHO9qFY2RGAQAALiPLly9X69atFR4errCwMIWFhSk8PFzNmzfXs88+q/z8/ALlN2zYoN69e6tevXr28tHR0eratatWrFgho4hHBbZt26ZBgwYpJibGXicyMlIdO3bUG2+8IavVWqhOXFycRowYoUaNGtnrREREqG3btnrqqaeUk5NTpvslMwoAAHCZPDO6ceNGLVq0SCtWrFDjxo0LXEtNTdX48ePl7e2te++9V5K0atUqzZ07V6+88oquvvpqeXt7S5Ly8/O1a9cuTZ06VcnJyZo8ebK9nW3btmno0KF66aWX1KtXL/n6+kqSbDab4uLi9NBDD+mPP/7QP/7xD3udxMRE9erVS4sWLdIbb7yhqlWr/u/2DCUmJurxxx/XyJEj9Z///KfUH5HFKCpcruAyMjIUFBSk6zRYXhZvs4cDoBS+SN5h9hAAlEFGpk01Gh9Uenq6AgMDzR6O3YWYoHun2fLy8iv39vPzz+m7H59w+r4feughxcTEaMKECUVe37t3r8aMGaOff/5ZktSyZUt98MEHatWqVZHlk5KS1LFjRx05ckSenp6SpAEDBmjChAkaOHBgkXXOnDmj5s2b6//+7/8UGhoqSZo8ebKaNGliD4L/ymazqW3btnr77bfVpk2bEu/zYkzTAwCASs9ic99RGp06dVKfPn2KvR4dHa2EhARJUl5entLS0ooNRCUpMjJSoaGhSkpKsp/bvXu3evToUWwdf39/tWvXTnv37nW6joeHh3r27Kndu3cXW6Y4TNMDAABcJoYMGeLw+q+//qqGDRtKklJSUlSrVq0S24yIiNCRI0dUp04dSVJ6erqqVavmVJ0LEhMTFR4eXqo6ziIYBQAAcPMzoxkZGQVO+/r62p/VdFZSUpImTJigRx55RJJktVrtU++OeHl5FVr0VNo6zvRVln4kpukBAAD+fB2oOw6dn14PCgqyHwsXLnR+aIahd955R61bt9Ztt92mv//97y7f7uWEzCgAAICbJSQkFFjA5GxWdN++fbrnnnuUlZWlL774Qm3btnVY/p577pEkvfzyy06PbdGiRfrvf/+rTz/91Ok6y5cv1+LFi7V9+3an6xSHYBQAAFR6FsOQxQ3T9BfaDAwMLNUuAlarVQsWLNAbb7yhxx57TGPGjJGHR8kT2qUJQi+YOXNmqeuMGjVKo0aNKnW9ohCMAgAAXEaysrI0YsQIeXl5adeuXapevXqR5Zx9RjM/P19eXqUL+f5ax5m+ytKPxDOjAAAAfy5gcsdRStOnT1dUVJQ++eSTYgNRSQoLC1NaWlqJ7SUnJ9tX0ktS9erVlZWVVao6UVFRSklJKVUdZxGMAgAAXCbi4uK0fv16LV68WBaLxWFZLy8v1apVSzt27Ci2THJyslJTUxUZGWk/Fxsbqw0bNhRb58yZM9q2bZuaNGnidB2bzaZvv/1WsbGxDsdcFIJRAAAAQ5LNDUcpE6Pbt29Xjx49VKVKFafKL1iwQKNHj9amTZuUl5dnP2+1WrVjxw4NGzZMM2fOLLAt02OPPab77rtPa9euLfA+eZvNpv3792vUqFH6+9//bn/7knT+udLFixfr/fffV3Z2tv28YRhKSkrSxIkTFRMTU+q3L0k8MwoAAHDZOHHihD7++GOtW7eu2DLe3t76+eefFRERoUGDBqlatWqaP3++4uLi7MGlt7e36tatq2nTpummm24qUL9NmzZasWKF5s2bp3vvvdceXHp4eCgyMlLjx4/XHXfcUaBOZGSkvvnmG82ZM0fz589XZmamJMlisSg0NFS33nqrXnjhhTLdM++m5930wBWFd9MDV6bL/d30PdvMlJenG95Nbz2nb7Yvuuzu+3LCND0AAABMwzQ9AACAITe9DrT8m6xoyIwCAADANGRGAQAAyrgnqFPtwiGCUQAAAJskx9t6lr1dOMQ0PQAAAExDZhQAAFR6FsOQxQ1T6u5os6IhMwoAAADTkBkFAABgAZNpyIwCAADANGRGAQAAyIyahswoAAAATENmFAAAgMyoaciMAgAAwDRkRgEAAHgDk2nIjAIAAMA0ZEYBAEClxxuYzENmFAAAAKYhMwoAAMBqetMQjAIAANgMyeKGwNFGMFoSpukBAABgGjKjAAAATNObhswoAAAATENmFAAAQG7KjIrMaEnIjAIAAMA0ZEYBAAB4ZtQ0ZEYBAABgGjKjAAAANkNueb6TfUZLRGYUAAAApiEzCgAAYNjOH+5oFw6RGQUAAIBpyIwCAACwmt40BKMAAAAsYDIN0/QAAAAwDZlRAAAApulNQ2YUAAAApiEzCgAAYMhNmdHyb7KiITMKAAAA05AZBQAA4JlR05AZBQAAgGnIjAIAANhsktzw6k4brwMtCZlRAAAAmIbMKAAAAM+MmobMKAAAAExDZhQAAIDMqGnIjAIAAMA0ZEYBAABshtzyuiQbmdGSEIwCAIBKzzBsMozy34bJHW1WNEzTAwAAwDRkRgEAAAzDPVPqLGAqEZlRAAAAmIbMKAAAgOGmBUxkRktEZhQAAACmITMKAABgs0kWN6x8ZzV9iciMAgAAwDRkRgEAAHhm1DRkRgEAAGAaMqMAAKDSM2w2GW54ZpQ3MJWMzCgAAABMQ2YUAACAZ0ZNQ2YUAAAApiEzCgAAYDMkC5lRMxCMAgAAGIYkd2x6TzBaEqbpAQAAYBoyowAAoNIzbIYMN0zTG2RGS0RmFAAAAKYhMwoAAGDY5J5nRtn0viRkRgEAAGAaMqMAAKDS45lR85AZBQAAgGnIjAIAAPDMqGkqZTB6IWWerzy3vIYWgPtkZPI/duBKlJF1/mf3cp22dldMkK+88m+0gqmUwWhmZqYkaZM+N3kkAEqrRmOzRwDAFZmZmQoKCjJ7GHY+Pj4KCwvTphT3xQRhYWHy8fFxW/tXOotxuf6J4kY2m03JyckKCAiQxWIxezgoZxkZGYqOjlZCQoICAwPNHg4AJ/GzW7EZhqHMzExFRETIw+PyWrJy7tw55ebmuq19Hx8f+fn5ua39K12lzIx6eHgoKirK7GHAzQIDA/mFBlyB+NmtuC6njOjF/Pz8CBZNdHn9aQIAAIBKhWAUAAAApiEYRYXj6+urefPmydfX1+yhACgFfnaByqlSLmACAADA5YHMKAAAAExDMAoAAADTEIwCAADANASjAAAAMA3BKCqE06dPa8aMGYqNjVV4eLjCwsIUFham5s2ba9KkSUpNTTV7iACckJWVpf79+2vp0qVmDwXAJUIwiiue1WpVr1695O/vr40bNyo5OVkpKSlKSUnRjz/+qKZNm6pz587Kzs42e6gAHMjIyNANN9ygPXv26MyZM2YPB8AlUilfB4qKZeXKlapXr57mzZtX6FpQUJCmTp2qAwcO6PXXX9e0adNMGCGAkpw9e1bXX3+9+vXrJ5vNZvZwAFxCZEZxxdu9e7d69OjhsEzv3r21e/fuSzQiAKVlGIbuv/9+zZ071+yhALjECEZxxUtMTFR4eLjDMhERETpy5MglGhGA0qpatapuueUWs4cBwAQEo7jiWa1WeXp6Oizj5eWl/Pz8SzQiAADgLIJRAAAAmIZgFBXO3r17FRMTo3379pk9FAAAUAJW06PCadKkiQ4ePGj2MAAAgBPIjOKK58zzoPn5+fLy4m8vAAAuNwSjuOJFRUUpJSXFYZnk5GTVqVPnEo0IAAA4i2AUV7zY2Fht2LDBYZkNGzYoNjb2Eo0IAAA4i2AUV7whQ4YoMTFR8+bN04kTJ2QYhv1aRkaGXnzxRa1du1Z33XWXiaMEAABFIRjFFc/T01Nff/21zp49q+7duysiIkJhYWEKCwtTx44d9euvv2rTpk3y9/c3e6gAnBAYGKiAgACzhwHgErEYF6eRAAAAgEuIzCgAAABMQzAKAAAA0xCMAgAAwDQEowAAADANwSgAAABMQzAKAAAA0xCMAgAAwDQEowAAADANwSgAAABMQzAKAJLmzp2rUaNGmT0MAKh0CEYBJ7399ttq2LCh0tLSSlUvMTFRderU0bp169w0MpSHI0eOKD4+vtT1jh49qvHjx6t58+by8/OTxWKxH97e3mrYsKGGDRumffv2lf+gAaAC8DJ7AMCV4vDhwzpw4IBmzJiht956y+l69957rxISEpSUlOTG0cEMJ0+eVKtWrSRJI0aMUJ06deTr62u/npeXp6SkJP373/9W69at9dtvv6levXqF2vnkk08UGxurxo0bu22sW7du1alTp9SnTx+39QEAZUEwCpTS22+/rbFjx6p79+4llv3000+1atUq9w8Kpnj66aeVm5uruLg41a5du9hyc+fOVdOmTfXkk09qyZIlha5Pnz5do0aN0uOPP+62sb788svav38/wSiAyw7T9EAphIeHq0uXLpowYYJycnIcls3KytLkyZM1cODASzQ6XGrbtm3ToEGDHAaikhQYGKj+/ftr9+7dRV43DEOGYbhjiJe0DwAoC4JRoBQ8PDz0+uuv6+DBg3rqqacclp0/f75Onjypl1566RKNDpdaQkKCwsLCnCp79dVXq0qVKm4eEQBceQhGgVJq3ry5HnroIS1YsKDYRSk7d+7UP//5Tz3xxBOqU6eOw/aOHz+uSZMmqVWrVqpatap98UvNmjXVqVMnPffcc8rPzy+2/u7duzV+/Hg1bNhQAQEBslgs8vDwUN26ddWnTx998803xdbdsmWLevTooerVqxdYeGOxWBQYGKjrrrtOP//8c6F6v/32m0JDQ3Xy5EmH93b69GmFhobq119/LXRt3LhxevDBB+3tTZgwQQ0bNpS/v78+++yzcv2Miqt/8bFs2TKH91KUkJAQpaenO1X2zjvvLPC9yMrKUlBQkCwWiw4fPqwFCxYUGM8TTzxRqI3Nmzdr+PDhiomJsd+Hl5eXGjZsqMGDB+uXX34pVKdXr172+9u8eXOBPoqass/KytLDDz+stm3bKjAw0F42KChI7du315w5c3T27NlSfEoA4BjPjAJlMGvWLP3rX//SpEmT9PXXX8tisdiv2Ww2TZgwQVdddZUmT57ssJ20tDQ1b95ceXl5GjFihEaNGqWqVavKMAydPn1av//+u6ZPn66vvvpKa9euLdCPJO3YsUPdunVTjRo1NHjwYEVGRqpq1aqy2WxKSUnR119/rV69emnJkiUaP358gbqnTp1S3759Vb9+fc2YMUOBgYEFrh89elSrV69Wv379tHfvXtWsWdN+7dixYzp27JhOnjyp4ODgYu/v9OnTOnbsmFJSUtSyZcsC1w4dOqTMzEytWLFCI0eOVIsWLdS7d281atRI11xzTbl9RhfqW61WDR8+3F7/r957771i76M4jRo10g8//CCr1SpPT89S1fX399dLL72k9PR0zZ07Vx06dCjwSMdfA8UvvvhCAwYMUMOGDXXTTTcpLCxMfn5+ysvLU3Jysj777DN16NBBn3/+ufr27WuvN2vWLN1444167733dPz4cd1///32ay1atCjQR05Ojtq3b6/4+HiNGDFCQ4cOVUBAgCQpMzNT+/fv1z/+8Q+tXr1a27Ztk7e3d6nuGQCKZABwyrx584zIyEj711999ZUhyXj33XcLlHvllVcMDw8PY+vWrfZzkoylS5cWanPKlClGYGCgkZSUVGy/69atMyQZn3/+eaFr48ePN6Kjo43Tp08XWddqtRojR440atWqZZw5c6bAteXLlxseHh7GsWPHiu07NTXVsFgsxvvvv1/g/LfffmtIMuLi4oqtaxiGcejQIUOS8dVXXxW61r17d6NDhw5GRESEsWrVKsNmsxXZhquf0ZQpU4zg4GAjNTXV4VjHjh1rdO7c2WGZv9q5c6fh4eFh3HzzzcbGjRuN/fv3GwkJCfbj+PHjxd7XxerWrWs88sgjDsv06dPH6NChg3Hu3Lkir+fm5hrdu3c3WrRoUWSfztzfs88+a3h4eBg7duwotszu3bsNDw8P45VXXnHYFgA4i2l6oIx69+6tUaNG6f7779eJEycknc8mPvzww5o6daratWtXYhsbN27UyJEjFRERUWyZvn37qkWLFvryyy8LXfP399esWbMUFBRUZF0PDw9NmzZNx48f1969ewtcS0hIUHBwsGrVqlVs37Vr19bixYvt2xeVty1btmjBggUaPHhwoYzmBa5+Rhs3btSYMWNKXGRUFq1atdJHH32kH3/8Udddd50aNmyo6Oho+1GrVi0FBQWpZ8+eRU6hl0aNGjU0Z86cAltHXczb21v33nuv9uzZo9OnT5epj40bN6pv37666qqrii3TsmVL3XDDDUV+1gBQFkzTAy5YvHix1q5dqxkzZujNN9/UtGnTFBgYqMcee8yp+vHx8Ro9erTDMhaLRTExMUVuyP7cc8/Z/zs9PV2ZmZmFynh5edn7atOmjf18cHCwsrKylJ+fby9TlGnTppV0G2Xm5+dX4v27+hnFx8erbt26rgzToZtvvlmDBg3S4cOHdejQoQK7LOTk5CghIUHvvvuuOnTooC1btqht27Zl6uff//63pPOr4k+dOqXs7OxCZfz8/CSdv+caNWqUuo/4+Hh17dq1xHIxMTH64YcfSt0+ABSFYBRwQe3atfX0009r/PjxioiI0L///W99+umnqlatmlP1MzIyZLPZlJiY6LCcr6+vjh49Wuj8uXPntGDBAr322mslvhnqrwttrr32WuXk5GjWrFm6/fbbC43Z39+/TAFNaTRr1qzEZy1d/YwyMjKc/n6U1YU3LTVs2LDI6/fee686dOigWbNmaf369WXq49SpU5o1a5Y+/PDDEhdNObuoqqh6Hh4eJX7Wnp6eOn78eJn6AIC/IhgFXHT77bdr2bJleuKJJ3TzzTeXel/Rhx56SA899FCJ5Xr16lXo3OOPP67FixdrypQpatu2bZFBl9Vq1ZAhQwqdb9mypRYtWqTZs2frmWeeKbLPkJAQPfjgg5oxY0ax0+iu+OuiqeK48hldDjw9PTVu3DjNnj1bhmGU6bOcPHmy1q5dq2nTpql58+ZFbhOVnJysCRMmuDTWF198US+++GKJ5Ro0aOBSPwBwAcEo4CIPDw8tW7ZMzzzzjObPn1/q+pMnTy6w+rk4f135LEmvvPKKHnjgAS1YsKDYeo62PJoxY4bGjRunP/74o1A27ezZs9q8ebNmzpypBg0a6O9//3uJY3QXVz4jd8nNzdUnn3yiW2+91angMjo6WhkZGTp16pTDHQiKcvr0aX3wwQdF7opwsf3795eq3aLccsstJT4WIUn169d3uS8AkAhGgXIRExOjV199tdT1qlWrpiZNmmjAgAGlrnvq1CmdPn1aHTp0cFjOUTAqSbVq1Sp2EdPQoUO1detWrV69ukAweiGjmZWV5VLfznDlM5LOj7WkcUoq9duJdu3apREjRqhNmzZq2rRpieWtVqskFflYgr+/f5HPgF5w6NAhSXLpe11SH5IUEBCg6OjoMn/WAFAWrKYHTFS/fn0lJCSUWG7WrFm6++67C5zz8Dj/42uz2RzW3bBhQ5Hn169fr2+//bbEvqOjo5WSklLgXL169SRJR44ccVh306ZNJbZfElc+I+n8WIta2PRXu3btKtW4oqKiJP0ZKJbkwqKionY+qFevnsN7vBDAlvV7faGPxMREh0G3s5/1q6++SsAKoNwQjAIm6tatm9577z2HC06OHz+upUuXFtqaKCgoSLVq1dJ3331XbN34+PhiV8N//PHHmjZtmsPgxDAMxcXF2QOvC2rUqKGWLVvqxRdfLDYb99tvv2nOnDnFtu0sVz4jSerevbt9w/ei2Gw2Pf3009qxY0epxhUaGqro6Gi99tprJQaJWVlZev3119WzZ88ir3fu3Flr1qwpNrCtX7++PDw8HH6vt2/f7nAXh2uvvVbHjx/XRx99VGyZbt266bPPPnMYvGdnZ+vFF18s8BIEAHAF0/SAiebOnat//etfaty4sYYPH66oqCj79jxnz55VYmKiPvnkE3l5een2228vVH/69OmaOXOmUlNT1aZNG/n7+ysvL0/Hjx/Xr7/+qnXr1mn69OlatGhRobpDhw7VW2+9pT59+qhbt26FnmM8e/asfvzxR23btk1PPvlkgWsWi0XPPvus/va3v+mqq67SgAEDFBYWJsMwdOzYMf3yyy/65ptvNH36dD311FOmfkZz5szRhx9+qKZNm2rEiBGqU6eO/Pz8lJ6erqSkJH3++ec6c+aMunTpUqqp+gufwdChQ9W+fXv97W9/U2hoaIFp+JycHCUlJemjjz7SqVOntGbNmiLbmjp1qpYsWaKrrrpKI0eOVL169TRkyBA1adJE0vnp8wkTJuihhx7Sr7/+qmbNmsnPz085OTk6duyYtm7dqu+++04PPPCAnn766SL76Ny5s4YOHarhw4frk08+UWxsrLp06aIePXrYy0yePFlLlixRq1atNHLkSNWtW9e+KC4nJ0cpKSlavXq1kpOTtXz5cqc/KwBwyLz99oEry5tvvml069atTHUbNGhgrFu3rshrKSkpxoQJE4wWLVoYVapUMSQZkgx/f3+jYcOGxqRJk4z9+/cXWTc/P9946aWXjNjYWMPf39+QZHh4eBihoaHGwIEDjc8//9ywWq1GvXr1jC+//LJQ/Xfeecdo2bKl4efnZ+/3wlGlShUjNjbWWLZsWbH3tX37dmPw4MFGgwYNDC8vL8PLy8sIDw83hg4damzatMk4deqUUbt2bWP37t2F6o4bN84YN26cU5+fK5+RYZx/k9Rf6/v7+xuNGzc2Jk+ebCQmJhpz5swxRo4c6dR4LvbDDz8Yffv2NerUqWN4eHgU+Ax9fX2Npk2bGqNHjzYOHz7ssJ2TJ08a9913nxEbG2tUq1bNePzxxwtcz87ONh599FGjWbNm9u+Xl5eXERkZaQwbNsz48ccfjbS0NKNWrVrGb7/9VmQfeXl5xgsvvGB06NDBqFmzptG7d+9CZTIyMowZM2YYV111lREQEGC/Fz8/P6N+/frGqFGjjO3bt5f6cwKA4lgMo5RP7QMAAADlhGdGAQAAYBqCUQAAAJiGYBQAAACmIRgFAACAaQhGAQAAYBqCUQAAAJiGYBQAAACmIRgFAACAaQhGAQAAYBqCUQAAAJiGYBQAAACmIRgFAACAaQhGAQAAYJr/B+w/yR6bw7oBAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ConfusionMatrixDisplay.from_predictions(disc_ssro_ds.x0.data, disc_ssro_ds.y0.data)\n", "plt.title(\"Confusion Matrix\")\n", "plt.xlabel(\"Measured State\")\n", "plt.ylabel(\"Prepared State\")" ] }, { "cell_type": "code", "execution_count": 42, "id": "bbe64b06", "metadata": { "execution": { "iopub.execute_input": "2024-11-13T02:36:38.757152Z", "iopub.status.busy": "2024-11-13T02:36:38.756966Z", "iopub.status.idle": "2024-11-13T02:36:38.762849Z", "shell.execute_reply": "2024-11-13T02:36:38.762226Z" } }, "outputs": [ { "data": { "text/plain": [ "'devices/device_2q_2024-11-13_02-36-38_UTC.json'" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.to_json_file(\"devices/\")" ] } ], "metadata": { "files_to_bundle_in_zip_file": [ "configs/tuning_transmon_coupled_pair_hardware_config.json", "devices/transmon_device_2q.json" ], "is_demo": true, "jupytext": { "main_language": "python", "notebook_metadata_filter": "files_to_bundle_in_zip_file,is_demo" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.20" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "0261c4f0cf284e4bb607a69fa99c3116": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0bafcdcbc9d748ab9476a1d9fe67f0d9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0f23a0e2526b415fbdd393c3ebbc76f3": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f9001dfaa3e349de97eb694ecd9eea64", "placeholder": "​", "style": "IPY_MODEL_9fab22fe23894ac9ae03c51c2eef3922", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "0f5de42aae9a4c75b8d9c71471564feb": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "0fd08f337eb147a2baf17bd3b1497364": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "10ea3a9be7ef49b7bc71750134e1c159": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8e1fed06ecf940288b0b3f74d7731add", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_1298af57675947bbb1f43b5ec6f4d532", "tabbable": null, "tooltip": null, "value": 100.0 } }, "1298af57675947bbb1f43b5ec6f4d532": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "146ef037dbfc4045ac3519820463d04a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "15c88feff07f4fe6a8c4152effac782c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2036012d74bd498eb9288be1b54071a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "21ed9872f3d947ccb13963d30f521de9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "22adb8c2f50849218ccd6782f699ec65": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b4246087d15d47c3aed2e2c4d4ad13c5", "placeholder": "​", "style": "IPY_MODEL_d4f00f0748464b0c9be0bd6bdd527101", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "24db056427464da0a55ca44251149135": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f3844d1439d74ec4aa233f1388c58472", "placeholder": "​", "style": "IPY_MODEL_fc18a241cc534b6cb6d69fccb2556074", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 100" } }, "26e35dbfa2c442489e30424c68238c1c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_321434dda83744b788856968c8e80cd8", "placeholder": "​", "style": "IPY_MODEL_c325905bb6244a16892f09b29d3debe4", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 300" } }, "278855bd0958401d8311df73a73586a7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "2867d2c8110b4564a7749d3b7e42ebe4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_e05e922be0964ad6a364ae11eb17c6c3", "placeholder": "​", "style": "IPY_MODEL_5638865c893b42e19e70eae9f4e68ff6", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "29844f29e73b4212b01d9f99be0bc84e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2bc685707dbf41a9905549d768d0fa9b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_15c88feff07f4fe6a8c4152effac782c", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_fac53be08dec42fb99f538215e5855e2", "tabbable": null, "tooltip": null, "value": 100.0 } }, "2c7178891f0b4e2eaaee788df170107d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "2cd7e3fd6c9f4b22b2401e21dea6d819": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "321434dda83744b788856968c8e80cd8": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3614482f04c9454d805cf7d7cbeb8bc8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "3fb75ab6c44d447eaf846eeb910d4bea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bb6092c1f8064f20bb8e204cdfd993cc", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6082a4a5bb6f471b867916cef7216980", "tabbable": null, "tooltip": null, "value": 100.0 } }, "402f9cfb7f1b49928a770fc6233de095": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0f5de42aae9a4c75b8d9c71471564feb", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_b2a7f70c734a4e77903805fcc46ada49", "tabbable": null, "tooltip": null, "value": 100.0 } }, "41769414ef7146ae8d6aaaddc4de811b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "459aef6ec4e840f6b086f7eac4d6193c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "4a3f096ad7a44614b54853c60a058ac4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_f898a3e4dce0445496afb294d3964400", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_8dec81a43e24433a8f5e8c17d6da8224", "tabbable": null, "tooltip": null, "value": 100.0 } }, "503ee4d040024ded9ae5ada3cb2f7b67": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "52600e8145bf4c1eb84d5a1effa79f52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "551601a4942a4fa2b69e9fd7bafa6fad": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_0f23a0e2526b415fbdd393c3ebbc76f3", "IPY_MODEL_3fb75ab6c44d447eaf846eeb910d4bea", "IPY_MODEL_56cd5b02fc544b6a929a3a323621d3e4" ], "layout": "IPY_MODEL_0261c4f0cf284e4bb607a69fa99c3116", "tabbable": null, "tooltip": null } }, "5638865c893b42e19e70eae9f4e68ff6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "56cd5b02fc544b6a929a3a323621d3e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_811df3b9215c48e9af35b33a6563e557", "placeholder": "​", "style": "IPY_MODEL_459aef6ec4e840f6b086f7eac4d6193c", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 125" } }, "589ec5356e8a4b2097648b67a5c43743": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5eb982bbf798444ba48c3bb9af69181e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "5eea325971ee4631b786d55f2951555b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6082a4a5bb6f471b867916cef7216980": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "658c5de6dc0e491e8f3e132f97df23b0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_41769414ef7146ae8d6aaaddc4de811b", "placeholder": "​", "style": "IPY_MODEL_96faf583d0124f61ad89672da48d5460", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "68db11f5e36346049874b1d7b03c54ea": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_9a0070eb596b4a928fdbcd82b63af131", "IPY_MODEL_4a3f096ad7a44614b54853c60a058ac4", "IPY_MODEL_26e35dbfa2c442489e30424c68238c1c" ], "layout": "IPY_MODEL_146ef037dbfc4045ac3519820463d04a", "tabbable": null, "tooltip": null } }, "71c9760944604048be86ede0ac07d467": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "76ad0838482145328ee9d40efa1100bc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7711dd0141eb44d88f67ac0c38146e60": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_22adb8c2f50849218ccd6782f699ec65", "IPY_MODEL_10ea3a9be7ef49b7bc71750134e1c159", "IPY_MODEL_bb434748d0094916beb674da88d7a9e0" ], "layout": "IPY_MODEL_0fd08f337eb147a2baf17bd3b1497364", "tabbable": null, "tooltip": null } }, "7bc3341f2909470f85c0fe6120b31011": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7ec5a49461164f3790351db08130546f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_658c5de6dc0e491e8f3e132f97df23b0", "IPY_MODEL_2bc685707dbf41a9905549d768d0fa9b", "IPY_MODEL_bf66384f789f49d1a6f75b364e6f8abe" ], "layout": "IPY_MODEL_d9d957290f7742539cb2b2811fafefd1", "tabbable": null, "tooltip": null } }, "811df3b9215c48e9af35b33a6563e557": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "86691de2839247cbb4f4ff1d73cb2c65": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "882f5beca8894c1a9fa6417b009b4b10": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_8b4c938b14bd42fda9283e6977e0ee9c", "IPY_MODEL_b7e84308a9ef4bacb85d948ca8ff3d7f", "IPY_MODEL_c26838e8c4214ef78e42680e8db48a32" ], "layout": "IPY_MODEL_86691de2839247cbb4f4ff1d73cb2c65", "tabbable": null, "tooltip": null } }, "8b4c938b14bd42fda9283e6977e0ee9c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_fc3b65aaadb648e59cf3aca9a8f93ec2", "placeholder": "​", "style": "IPY_MODEL_bb9dd741bd3548be9bbffe907d57bcf2", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "8dec81a43e24433a8f5e8c17d6da8224": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8e1fed06ecf940288b0b3f74d7731add": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8e30732205284dc98f7b0f1f72f1adf4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5eea325971ee4631b786d55f2951555b", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_ae261c8c61dd44f5a312235252187d52", "tabbable": null, "tooltip": null, "value": 100.0 } }, "901e1d6147d04e0d92c5bc2b0fad7572": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_2867d2c8110b4564a7749d3b7e42ebe4", "IPY_MODEL_8e30732205284dc98f7b0f1f72f1adf4", "IPY_MODEL_24db056427464da0a55ca44251149135" ], "layout": "IPY_MODEL_9cf3570f07a649b68e5d0d7e926a4f98", "tabbable": null, "tooltip": null } }, "9263c505b39e44d590260d826865bb60": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "964addeb91a446369c93bc3e12f740a5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_71c9760944604048be86ede0ac07d467", "placeholder": "​", "style": "IPY_MODEL_52600e8145bf4c1eb84d5a1effa79f52", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "96faf583d0124f61ad89672da48d5460": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "9a0070eb596b4a928fdbcd82b63af131": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_5eb982bbf798444ba48c3bb9af69181e", "placeholder": "​", "style": "IPY_MODEL_2cd7e3fd6c9f4b22b2401e21dea6d819", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "9cf3570f07a649b68e5d0d7e926a4f98": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "9fab22fe23894ac9ae03c51c2eef3922": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "a48bd8bcd95b4f6299d75f9c151ceff0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "ac7d0b82cedb4aafb225b44a5183637a": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "ae261c8c61dd44f5a312235252187d52": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "afa1cffafb57440db22b3dcdb0ab19ba": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b2a7f70c734a4e77903805fcc46ada49": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "b2f33b6d61ed4a5c93ba7625e4250f23": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b4246087d15d47c3aed2e2c4d4ad13c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b482b06631e54db78b09ec27fa85692e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_964addeb91a446369c93bc3e12f740a5", "IPY_MODEL_402f9cfb7f1b49928a770fc6233de095", "IPY_MODEL_c31f2d1ec595405abd05e085cdff4bc1" ], "layout": "IPY_MODEL_b2f33b6d61ed4a5c93ba7625e4250f23", "tabbable": null, "tooltip": null } }, "b7e84308a9ef4bacb85d948ca8ff3d7f": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_29844f29e73b4212b01d9f99be0bc84e", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_2036012d74bd498eb9288be1b54071a5", "tabbable": null, "tooltip": null, "value": 100.0 } }, "b8e40422b37f4fe88b584fdbe29d041b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_589ec5356e8a4b2097648b67a5c43743", "placeholder": "​", "style": "IPY_MODEL_278855bd0958401d8311df73a73586a7", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 400" } }, "bb434748d0094916beb674da88d7a9e0": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_edc8390681a840e89ffb5b2343e277d7", "placeholder": "​", "style": "IPY_MODEL_2c7178891f0b4e2eaaee788df170107d", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 1000" } }, "bb6092c1f8064f20bb8e204cdfd993cc": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bb9dd741bd3548be9bbffe907d57bcf2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "bf66384f789f49d1a6f75b364e6f8abe": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_0bafcdcbc9d748ab9476a1d9fe67f0d9", "placeholder": "​", "style": "IPY_MODEL_a48bd8bcd95b4f6299d75f9c151ceff0", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 400" } }, "c26838e8c4214ef78e42680e8db48a32": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_21ed9872f3d947ccb13963d30f521de9", "placeholder": "​", "style": "IPY_MODEL_ac7d0b82cedb4aafb225b44a5183637a", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 400" } }, "c31f2d1ec595405abd05e085cdff4bc1": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7bc3341f2909470f85c0fe6120b31011", "placeholder": "​", "style": "IPY_MODEL_3614482f04c9454d805cf7d7cbeb8bc8", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 1000" } }, "c325905bb6244a16892f09b29d3debe4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "d34364376e6f450cb9f07a38c73b7216": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_efaa2e0cb2614e11a8dc84198e5c5f9e", "IPY_MODEL_ed2aa29843b94ff38cf380fbb8215092", "IPY_MODEL_b8e40422b37f4fe88b584fdbe29d041b" ], "layout": "IPY_MODEL_9263c505b39e44d590260d826865bb60", "tabbable": null, "tooltip": null } }, "d4f00f0748464b0c9be0bd6bdd527101": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "d5873c2f637c4211a4421b896ab4aaa7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "d9d957290f7742539cb2b2811fafefd1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "e05e922be0964ad6a364ae11eb17c6c3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "ed2aa29843b94ff38cf380fbb8215092": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_76ad0838482145328ee9d40efa1100bc", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_503ee4d040024ded9ae5ada3cb2f7b67", "tabbable": null, "tooltip": null, "value": 100.0 } }, "edc8390681a840e89ffb5b2343e277d7": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "efaa2e0cb2614e11a8dc84198e5c5f9e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_afa1cffafb57440db22b3dcdb0ab19ba", "placeholder": "​", "style": "IPY_MODEL_d5873c2f637c4211a4421b896ab4aaa7", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "f3844d1439d74ec4aa233f1388c58472": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f898a3e4dce0445496afb294d3964400": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f9001dfaa3e349de97eb694ecd9eea64": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "fac53be08dec42fb99f538215e5855e2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "fc18a241cc534b6cb6d69fccb2556074": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "fc3b65aaadb648e59cf3aca9a8f93ec2": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }