See also
A Jupyter notebook version of this tutorial can be downloaded here
.
Binned acquisition#
In this tutorial, we will demonstrate the sequencer-based acquisition binning procedure. The binning process is applied on the input path after real-time demodulation, (weighed) integration, IQ rotation and discretization. It allows storing both the integration and discretization results on the fly without intervention of the host PC in up to 131072 bins. It also allows the averaging of those bins on the fly (see section Sequencer Acquisition). We will then use the module sequencers to sequence waveforms on the outputs and, simultaneously, acquire the resulting waveforms on the inputs.
We will show this by using a QRM-RF and directly connecting output \(\text{O}^{1}\) to input \(\text{I}^{1}\).
Setup#
First, we are going to import the required packages.
[1]:
import json
import math
import matplotlib.pyplot as plt
import scipy.signal
[2]:
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
from qcodes.instrument import find_or_create_instrument
from qblox_instruments import Cluster, ClusterType
if TYPE_CHECKING:
from qblox_instruments.qcodes_drivers.module import Module
Scan For Clusters#
We scan for the available devices connected via ethernet using the Plug & Play functionality of the Qblox Instruments package (see Plug & Play for more info).
!qblox-pnp list
[3]:
cluster_ip = "10.10.200.42"
cluster_name = "cluster0"
Connect to Cluster#
We now make a connection with the Cluster.
[4]:
cluster = find_or_create_instrument(
Cluster,
recreate=True,
name=cluster_name,
identifier=cluster_ip,
dummy_cfg=(
{
2: ClusterType.CLUSTER_QCM,
4: ClusterType.CLUSTER_QRM,
6: ClusterType.CLUSTER_QCM_RF,
8: ClusterType.CLUSTER_QRM_RF,
}
if cluster_ip is None
else None
),
)
Get connected modules#
[5]:
def get_connected_modules(cluster: Cluster, filter_fn: Callable | None = None) -> dict[int, Module]:
def checked_filter_fn(mod: ClusterType) -> bool:
if filter_fn is not None:
return filter_fn(mod)
return True
return {
mod.slot_idx: mod for mod in cluster.modules if mod.present() and checked_filter_fn(mod)
}
[6]:
# QRM-RF modules
modules = get_connected_modules(cluster, lambda mod: mod.is_qrm_type and mod.is_rf_type)
[7]:
# This uses the module of the correct type with the lowest slot index
module = list(modules.values())[0]
Reset the Cluster#
We reset the Cluster to enter a well-defined state. Note that resetting will clear all stored parameters, so resetting between experiments is usually not desirable.
[8]:
cluster.reset()
print(cluster.get_system_status())
Status: OKAY, Flags: NONE, Slot flags: NONE
Generate waveforms and weights#
Next, we need to create the waveforms used by the sequence for playback on the outputs as well as weights used by the sequence for weighed integrations. To keep it straightforward, we use the DC offset from the sequencers as our waveform and define waveform weights in the cell below.
[9]:
# Waveform and weight parameters
waveform_weight_length = 600 # nanoseconds
# These will be used as weights in the "Weighed acquisition" section
waveforms_weights = {
"gaussian": {
"data": scipy.signal.windows.gaussian(
waveform_weight_length, std=0.12 * waveform_weight_length
).tolist(),
"index": 0,
},
"sine": {
"data": [
math.sin((2 * math.pi / waveform_weight_length) * i)
for i in range(0, waveform_weight_length)
],
"index": 1,
},
"block": {"data": [1.0 for _ in range(0, waveform_weight_length)], "index": 2},
}
Specify acquisitions#
We also need to specify the acquisitions so that the instrument can allocate the required memory for its acquisition list. In this case we will create 4 acquisition specifications that each create multiple bins.
[10]:
# Acquisitions
acquisitions = {
"non_weighed": {"num_bins": 10, "index": 0},
"weighed": {"num_bins": 10, "index": 1},
"large": {"num_bins": 131072, "index": 2},
"avg": {"num_bins": 10, "index": 3},
"single": {"num_bins": 1, "index": 4},
}
Create Q1ASM program#
Now that we have the waveform and acquisition specifications for the sequence, we need a simple Q1ASM program that sequences the waveforms and triggers the acquisitions. In this case we will simply trigger 10 non-weighed acquisitions and store each acquisition in a separate bin.
[11]:
# Sequence program.
seq_prog = """
move 0,R0 #Loop iterator.
nop
loop: acquire 0,R0,1200 #Acquire bins and store them in "non_weighed" acquisition.
add R0,1,R0 #Increment iterator
nop #Wait a cycle for R0 to be available.
jlt R0,10,@loop #Run until number of iterations is done.
stop #Stop.
"""
Upload sequence#
Now that we have the waveform, weights and acquisition specifications and Q1ASM program, we can combine them in a sequence stored in a JSON file.
[12]:
# Add sequence program, waveforms, weights and acquisitions to single dictionary and write to JSON file.
sequence = {
"waveforms": waveforms_weights,
"weights": waveforms_weights,
"acquisitions": acquisitions,
"program": seq_prog,
}
with open("sequence.json", "w", encoding="utf-8") as file:
json.dump(sequence, file, indent=4)
file.close()
Let’s write the JSON file to the instruments. We will use sequencer 0, which will drive outputs \(\text{O}^{[1-2]}\) and acquire on inputs \(\text{I}^{[1-2]}\).
[13]:
# Upload sequence.
module.sequencer0.sequence("sequence.json")
Play sequence#
The sequence has been uploaded to the instrument. Now we need to configure the sequencers. To keep it simple we will set a DC signal on the outputs of the instrument by enabling the sequencer offsets and disabling the modulation. These DC signals will then be acquired through the inputs. As such, we will also disable the demodulation on the input path. Furthermore, since we are running non-weighed integrations, we need to specify the integration length. This integration length will be used for every non-weighed integration moving forward. We will also put the integration result acquisition rotation to 0 degrees and acquisition threshold to 0.
[14]:
# Map sequencer to specific outputs (but first disable all sequencer connections)
module.disconnect_outputs()
module.disconnect_inputs()
[15]:
module.sequencer0.connect_sequencer("io0")
[16]:
# Configure scope mode
module.scope_acq_sequencer_select(0)
module.scope_acq_trigger_mode_path0("sequencer")
module.scope_acq_trigger_mode_path1("sequencer")
# Set AWG offsets
module.sequencer0.offset_awg_path0(0.5)
module.sequencer0.offset_awg_path1(0.5)
# Configure integration
module.sequencer0.integration_length_acq(1000)
module.sequencer0.thresholded_acq_rotation(0)
module.sequencer0.thresholded_acq_threshold(0)
[17]:
# Configure the sequencer
module.sequencer0.mod_en_awg(True)
module.sequencer0.demod_en_acq(True)
[18]:
# Enable marker switches to toggle the RF switch before output port
module.sequencer0.marker_ovr_en(True)
module.sequencer0.marker_ovr_value(3)
[19]:
# Set the NCO frequency
module.sequencer0.nco_freq(50e6)
[20]:
# Set the LO frequency. If this is commented out, the value is set to the default value
module.out0_in0_lo_freq(3e9)
Now let’s start the sequence.
[21]:
# Arm and start sequencer.
module.arm_sequencer(0)
module.start_sequencer()
# Print status of sequencer.
print(module.get_sequencer_status(0))
Status: OKAY, State: STOPPED, Info Flags: ACQ_SCOPE_DONE_PATH_0, ACQ_SCOPE_DONE_PATH_1, ACQ_BINNING_DONE, Warning Flags: NONE, Error Flags: NONE, Log: []
Retrieve acquisition#
Next, we will have a quick look at the input signal so that we can compare it to the integration results. Since we are integrating over a DC signal we are expecting the integration results to be roughly equal to the average DC value.
[22]:
# Wait for the sequencer to stop with a timeout period of one minute.
module.get_acquisition_status(0)
# Move acquisition data from temporary memory to acquisition list.
module.store_scope_acquisition(0, "non_weighed")
# Get acquisition list from instrument.
non_weighed_acq = module.get_acquisitions(0)["non_weighed"]
# Plot acquired signal on both inputs.
fig, ax = plt.subplots(1, 1)
ax.plot(non_weighed_acq["acquisition"]["scope"]["path0"]["data"][0:1000])
ax.plot(non_weighed_acq["acquisition"]["scope"]["path1"]["data"][0:1000])
ax.set_xlabel("Time (ns)")
ax.set_ylabel("Relative amplitude")
plt.show()
To check if the integration results match what we expect, we need to divide the integration results by the integration length which was set through the corresponding QCoDeS parameter. Note that the ‘valid’ key of the dictionary indicates if the bin was actually set during the sequence.
[23]:
int_len = module.sequencer0.integration_length_acq()
bins = non_weighed_acq["acquisition"]["bins"]
bins["integration"]["path0"] = [(val / int_len) for val in bins["integration"]["path0"]]
bins["integration"]["path1"] = [(val / int_len) for val in bins["integration"]["path1"]]
bins
[23]:
{'integration': {'path0': [-0.24775867122618467,
-0.2423732291157792,
-0.2411792867611138,
-0.2419990229604299,
-0.24342598925256473,
-0.24510161211529066,
-0.24761211529066926,
-0.2514660478749389,
-0.2550468978993649,
-0.25547093307278945],
'path1': [-0.6675735222276502,
-0.6693659013190034,
-0.669790425012213,
-0.6694938935026868,
-0.6691792867611138,
-0.6685090376160234,
-0.6676453346360528,
-0.6664127992183684,
-0.6651372740595994,
-0.664781143136297]},
'threshold': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'avg_cnt': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
Weighed acquisition#
In the following, we look into weighed integrations. This refers to integration with a weighting given by a particular weight that we specified earlier. This is equivalent to multiplying the acquired trace with a function (which specifies the weighting) and integrating the result.
To do this, we will need to modify the sequence program slightly and reupload it. We will be using a gaussian weight to integrate over input path 0 and a sine weight to integrate over input path 1. The integration length of a weighed integration is determined by the weight length.
[24]:
# Sequence program.
seq_prog = """
move 0,R0 #Loop iterator.
move 0,R1 #Weight for path 0.
move 1,R2 #Weight for path 1.
nop
loop: acquire_weighed 1,R0,R1,R2,1200 #Acquire bins and store them in "weighed" acquisition.
add R0,1,R0 #Increment iterator
nop #Wait a cycle for R0 to be available.
jlt R0,10,@loop #Run until number of iterations is done.
stop #Stop.
"""
[25]:
# Add sequence program, waveforms, weights and acquisitions to single dictionary and write to JSON file.
sequence = {
"waveforms": waveforms_weights,
"weights": waveforms_weights,
"acquisitions": acquisitions,
"program": seq_prog,
}
with open("sequence.json", "w", encoding="utf-8") as file:
json.dump(sequence, file, indent=4)
file.close()
[26]:
# Upload sequence.
module.sequencer0.sequence("sequence.json")
Let’s start the sequence and retrieve the results.
[27]:
# Arm and start sequencer.
module.arm_sequencer(0) # Arm sequencer 0
module.start_sequencer() # Start all armed sequencers
# Print status of sequencer.
print(module.get_sequencer_status(0))
Status: OKAY, State: STOPPED, Info Flags: ACQ_SCOPE_DONE_PATH_0, ACQ_SCOPE_DONE_PATH_1, ACQ_BINNING_DONE, Warning Flags: NONE, Error Flags: NONE, Log: []
[28]:
# Wait for the sequencer to stop with a timeout period of one minute.
module.get_acquisition_status(0)
# Get acquisition list from instrument.
weighed_acq = module.get_acquisitions(0)["weighed"]
To check if the integration results match what we expect we need to divide the integration results by the integration length again. In this case the integration length is determined by the length of the weights.
[29]:
int_len = waveform_weight_length
bins = weighed_acq["acquisition"]["bins"]
bins["integration"]["path0"] = [(val / int_len) for val in bins["integration"]["path0"]]
bins["integration"]["path1"] = [(val / int_len) for val in bins["integration"]["path1"]]
bins
[29]:
{'integration': {'path0': [-0.07654307338846345,
-0.07641184882822472,
-0.07588152683235291,
-0.0748720688315706,
-0.07311262755628657,
-0.07218355854485223,
-0.07230879454143377,
-0.07265888010200286,
-0.07314133097736493,
-0.07378446079101703],
'path1': [8.149116189669776e-05,
0.0001244094666081493,
0.0002048091952772125,
0.00022286835811769772,
0.00028880898303640704,
0.00012566556942625057,
2.4930339592448332e-05,
8.090288575104488e-05,
6.2766956652202e-05,
6.160233693991557e-05]},
'threshold': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'avg_cnt': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
Large number of bins#
The QRM supports up to 131072 bins. To show that, we need to change the program slightly. We will use the non-weighed acquisition program, however, we will now loop over the maximum number of acquisitions while storing each result in a separate bin.
[30]:
# Sequence program.
seq_prog = """
move 0,R0 #Loop iterator.
nop
loop: acquire 2,R0,1200 #Acquire bins and store them in "large" acquisition.
add R0,1,R0 #Increment iterator
nop #Wait a cycle for R0 to be available.
jlt R0,131072,@loop #Run until number of iterations is done.
stop #Stop.
"""
[31]:
# Add sequence program, waveforms, weights and acquisitions to single dictionary and write to JSON file.
sequence = {
"waveforms": waveforms_weights,
"weights": waveforms_weights,
"acquisitions": acquisitions,
"program": seq_prog,
}
with open("sequence.json", "w", encoding="utf-8") as file:
json.dump(sequence, file, indent=4)
file.close()
[32]:
# Upload sequence.
module.sequencer0.sequence("sequence.json")
Let’s start the sequence and retrieve the results.
[33]:
# Arm and start sequencer.
module.arm_sequencer(0)
module.start_sequencer()
# Print status of sequencer.
print(module.get_sequencer_status(0))
Status: OKAY, State: RUNNING, Info Flags: NONE, Warning Flags: NONE, Error Flags: NONE, Log: []
[34]:
# Wait for the sequencer to stop with a timeout period of one minute.
module.get_acquisition_status(0, timeout=1)
# Get acquisition list from instrument.
large_acq = module.get_acquisitions(0)["large"]
Since the number of bins is now too large to simply print, we will check the number of bins and we will check the bins for NaN values which indicate that a bin is not written.
[35]:
int_len = module.sequencer0.integration_length_acq()
bins = large_acq["acquisition"]["bins"]
bins["integration"]["path0"] = [(val / int_len) for val in bins["integration"]["path0"]]
bins["integration"]["path1"] = [(val / int_len) for val in bins["integration"]["path1"]]
print("Number of bins: {}".format(len(bins["avg_cnt"])))
for it, val in enumerate(bins["integration"]["path0"]):
if math.isnan(val):
raise Exception(f"NaN found at index {it}.")
for it, val in enumerate(bins["integration"]["path1"]):
if math.isnan(val):
raise Exception(f"NaN found at index {it}.")
print("All values are valid.")
Number of bins: 131072
All values are valid.
We will also plot the integration results in every bin to visualize the contents.
[36]:
# Plot bins
fig, ax = plt.subplots(1, 1)
ax.plot(bins["integration"]["path0"])
ax.plot(bins["integration"]["path1"])
ax.set_xlabel("Bin index")
ax.set_ylabel("Relative amplitude")
plt.show()
Averaging#
As you may have noticed, the acquisition results also contain an average counter. This average counter reflects the number of times a bin has been averaged during the sequence. Each time the sequencer writes to the same bin the results are automatically accumulated and the average counter is increased. Upon retrieval of the acquisition results, each result is divided by the average counter and therefore automatically averaged. To show this we will change the sequence one last time. This time we will average 10 bins a 1000 times each.
[37]:
# Sequence program.
seq_prog = """
move 0,R1 #Average iterator.
avg: move 0,R0 #Bin iterator.
nop
loop: acquire 3,R0,1200 #Acquire bins and store them in "avg" acquisition.
add R0,1,R0 #Increment bin iterator
nop #Wait a cycle for R0 to be available.
jlt R0,10,@loop #Run until number of avg iterations is done.
add R1,1,R1 #Increment avg iterator
nop #Wait a cycle for R1 to be available.
jlt R1,1000,@avg #Run until number of average iterations is done.
stop #Stop.
"""
[38]:
# Add sequence program, waveforms, weights and acquisitions to single dictionary and write to JSON file.
sequence = {
"waveforms": waveforms_weights,
"weights": waveforms_weights,
"acquisitions": acquisitions,
"program": seq_prog,
}
with open("sequence.json", "w", encoding="utf-8") as file:
json.dump(sequence, file, indent=4)
file.close()
[39]:
# Upload sequence.
module.sequencer0.sequence("sequence.json")
Let’s start the sequence and retrieve the results.
[40]:
# Arm and start sequencer.
module.arm_sequencer(0)
module.start_sequencer()
# Print status of sequencer.
print(module.get_sequencer_status(0))
Status: OKAY, State: RUNNING, Info Flags: NONE, Warning Flags: NONE, Error Flags: NONE, Log: []
Note that the average count of each bin is now set to a 1000.
[41]:
# Wait for the sequencer to stop with a timeout period of one minute.
module.get_acquisition_status(0)
# Get acquisition list from instrument.
avg_acq = module.get_acquisitions(0)["avg"]
[42]:
int_len = module.sequencer0.integration_length_acq()
bins = avg_acq["acquisition"]["bins"]
bins["integration"]["path0"] = [(val / int_len) for val in bins["integration"]["path0"]]
bins["integration"]["path1"] = [(val / int_len) for val in bins["integration"]["path1"]]
bins
[42]:
{'integration': {'path0': [-0.24706584709330726,
-0.24707348851978503,
-0.24707811480214947,
-0.24708001465559354,
-0.24708679237909134,
-0.24708753444064485,
-0.24708707034684904,
-0.24708238788470932,
-0.24707298925256474,
-0.24706860625305324],
'path1': [-0.6663448773815339,
-0.6663445549584759,
-0.6663469447972643,
-0.6663403829995115,
-0.6663373224230581,
-0.6663352721055201,
-0.666336174890083,
-0.6663398246213972,
-0.6663408187591596,
-0.6663398671226184]},
'threshold': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
'avg_cnt': [1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000]}
Stop#
Finally, let’s stop the sequencers if they haven’t already and close the instrument connection. One can also display a detailed snapshot containing the instrument parameters before closing the connection by uncommenting the corresponding lines.
[43]:
# Stop both sequencers.
module.stop_sequencer()
# Print status of both sequencers (should now say it is stopped).
print(module.get_sequencer_status(0))
print(module.get_sequencer_status(1))
print()
# Print an overview of the instrument parameters.
print("Snapshot:")
module.print_readable_snapshot(update=True)
# Reset the cluster
cluster.reset()
print(cluster.get_system_status())
Status: OKAY, State: STOPPED, Info Flags: FORCED_STOP, ACQ_SCOPE_DONE_PATH_0, ACQ_SCOPE_DONE_PATH_1, ACQ_BINNING_DONE, Warning Flags: NONE, Error Flags: NONE, Log: []
Status: OKAY, State: STOPPED, Info Flags: FORCED_STOP, Warning Flags: NONE, Error Flags: NONE, Log: []
Snapshot:
cluster0_module8:
parameter value
--------------------------------------------------------------------------------
in0_att : 0 (dB)
in0_offset_path0 : 0 (V)
in0_offset_path1 : 0 (V)
marker0_exp0_config : bypassed
marker0_exp1_config : bypassed
marker0_exp2_config : bypassed
marker0_exp3_config : bypassed
marker0_fir_config : bypassed
marker0_inv_en : False
marker1_exp0_config : bypassed
marker1_exp1_config : bypassed
marker1_exp2_config : bypassed
marker1_exp3_config : bypassed
marker1_fir_config : bypassed
marker1_inv_en : False
marker2_exp0_config : bypassed
marker2_exp1_config : bypassed
marker2_exp2_config : bypassed
marker2_exp3_config : bypassed
marker2_fir_config : bypassed
marker3_exp0_config : bypassed
marker3_exp1_config : bypassed
marker3_exp2_config : bypassed
marker3_exp3_config : bypassed
marker3_fir_config : bypassed
out0_att : 0 (dB)
out0_exp0_config : bypassed
out0_exp1_config : bypassed
out0_exp2_config : bypassed
out0_exp3_config : bypassed
out0_fir_config : bypassed
out0_in0_lo_en : True
out0_in0_lo_freq : 3000000000 (Hz)
out0_in0_lo_freq_cal_type_default : off (Hz)
out0_latency : 0 (s)
out0_offset_path0 : 7.625 (mV)
out0_offset_path1 : 7.625 (mV)
present : True
scope_acq_avg_mode_en_path0 : False
scope_acq_avg_mode_en_path1 : False
scope_acq_sequencer_select : 0
scope_acq_trigger_level_path0 : 0
scope_acq_trigger_level_path1 : 0
scope_acq_trigger_mode_path0 : sequencer
scope_acq_trigger_mode_path1 : sequencer
cluster0_module8_sequencer0:
parameter value
--------------------------------------------------------------------------------
connect_acq : in0
connect_out0 : IQ
cont_mode_en_awg_path0 : False
cont_mode_en_awg_path1 : False
cont_mode_waveform_idx_awg_path0 : 0
cont_mode_waveform_idx_awg_path1 : 0
demod_en_acq : True
gain_awg_path0 : 1
gain_awg_path1 : 1
integration_length_acq : 1000
marker_ovr_en : True
marker_ovr_value : 3
mixer_corr_gain_ratio : 1
mixer_corr_phase_offset_degree : -0
mod_en_awg : True
nco_freq : 5e+07 (Hz)
nco_freq_cal_type_default : off (Hz)
nco_phase_offs : 0 (Degrees)
nco_prop_delay_comp : 0 (ns)
nco_prop_delay_comp_en : False (ns)
offset_awg_path0 : 0.49998
offset_awg_path1 : 0.49998
sync_en : False
thresholded_acq_marker_address : 1
thresholded_acq_marker_en : False
thresholded_acq_marker_invert : False
thresholded_acq_rotation : 0 (Degrees)
thresholded_acq_threshold : 0
thresholded_acq_trigger_address : 1
thresholded_acq_trigger_en : False
thresholded_acq_trigger_invert : False
trigger10_count_threshold : 1
trigger10_threshold_invert : False
trigger11_count_threshold : 1
trigger11_threshold_invert : False
trigger12_count_threshold : 1
trigger12_threshold_invert : False
trigger13_count_threshold : 1
trigger13_threshold_invert : False
trigger14_count_threshold : 1
trigger14_threshold_invert : False
trigger15_count_threshold : 1
trigger15_threshold_invert : False
trigger1_count_threshold : 1
trigger1_threshold_invert : False
trigger2_count_threshold : 1
trigger2_threshold_invert : False
trigger3_count_threshold : 1
trigger3_threshold_invert : False
trigger4_count_threshold : 1
trigger4_threshold_invert : False
trigger5_count_threshold : 1
trigger5_threshold_invert : False
trigger6_count_threshold : 1
trigger6_threshold_invert : False
trigger7_count_threshold : 1
trigger7_threshold_invert : False
trigger8_count_threshold : 1
trigger8_threshold_invert : False
trigger9_count_threshold : 1
trigger9_threshold_invert : False
upsample_rate_awg_path0 : 0
upsample_rate_awg_path1 : 0
cluster0_module8_sequencer1:
parameter value
--------------------------------------------------------------------------------
connect_acq : off
connect_out0 : off
cont_mode_en_awg_path0 : False
cont_mode_en_awg_path1 : False
cont_mode_waveform_idx_awg_path0 : 0
cont_mode_waveform_idx_awg_path1 : 0
demod_en_acq : False
gain_awg_path0 : 1
gain_awg_path1 : 1
integration_length_acq : 1024
marker_ovr_en : False
marker_ovr_value : 0
mixer_corr_gain_ratio : 1
mixer_corr_phase_offset_degree : -0
mod_en_awg : False
nco_freq : 0 (Hz)
nco_freq_cal_type_default : off (Hz)
nco_phase_offs : 0 (Degrees)
nco_prop_delay_comp : 0 (ns)
nco_prop_delay_comp_en : False (ns)
offset_awg_path0 : 0
offset_awg_path1 : 0
sync_en : False
thresholded_acq_marker_address : 1
thresholded_acq_marker_en : False
thresholded_acq_marker_invert : False
thresholded_acq_rotation : 0 (Degrees)
thresholded_acq_threshold : 0
thresholded_acq_trigger_address : 1
thresholded_acq_trigger_en : False
thresholded_acq_trigger_invert : False
trigger10_count_threshold : 1
trigger10_threshold_invert : False
trigger11_count_threshold : 1
trigger11_threshold_invert : False
trigger12_count_threshold : 1
trigger12_threshold_invert : False
trigger13_count_threshold : 1
trigger13_threshold_invert : False
trigger14_count_threshold : 1
trigger14_threshold_invert : False
trigger15_count_threshold : 1
trigger15_threshold_invert : False
trigger1_count_threshold : 1
trigger1_threshold_invert : False
trigger2_count_threshold : 1
trigger2_threshold_invert : False
trigger3_count_threshold : 1
trigger3_threshold_invert : False
trigger4_count_threshold : 1
trigger4_threshold_invert : False
trigger5_count_threshold : 1
trigger5_threshold_invert : False
trigger6_count_threshold : 1
trigger6_threshold_invert : False
trigger7_count_threshold : 1
trigger7_threshold_invert : False
trigger8_count_threshold : 1
trigger8_threshold_invert : False
trigger9_count_threshold : 1
trigger9_threshold_invert : False
upsample_rate_awg_path0 : 0
upsample_rate_awg_path1 : 0
cluster0_module8_sequencer2:
parameter value
--------------------------------------------------------------------------------
connect_acq : off
connect_out0 : off
cont_mode_en_awg_path0 : False
cont_mode_en_awg_path1 : False
cont_mode_waveform_idx_awg_path0 : 0
cont_mode_waveform_idx_awg_path1 : 0
demod_en_acq : False
gain_awg_path0 : 1
gain_awg_path1 : 1
integration_length_acq : 1024
marker_ovr_en : False
marker_ovr_value : 0
mixer_corr_gain_ratio : 1
mixer_corr_phase_offset_degree : -0
mod_en_awg : False
nco_freq : 0 (Hz)
nco_freq_cal_type_default : off (Hz)
nco_phase_offs : 0 (Degrees)
nco_prop_delay_comp : 0 (ns)
nco_prop_delay_comp_en : False (ns)
offset_awg_path0 : 0
offset_awg_path1 : 0
sync_en : False
thresholded_acq_marker_address : 1
thresholded_acq_marker_en : False
thresholded_acq_marker_invert : False
thresholded_acq_rotation : 0 (Degrees)
thresholded_acq_threshold : 0
thresholded_acq_trigger_address : 1
thresholded_acq_trigger_en : False
thresholded_acq_trigger_invert : False
trigger10_count_threshold : 1
trigger10_threshold_invert : False
trigger11_count_threshold : 1
trigger11_threshold_invert : False
trigger12_count_threshold : 1
trigger12_threshold_invert : False
trigger13_count_threshold : 1
trigger13_threshold_invert : False
trigger14_count_threshold : 1
trigger14_threshold_invert : False
trigger15_count_threshold : 1
trigger15_threshold_invert : False
trigger1_count_threshold : 1
trigger1_threshold_invert : False
trigger2_count_threshold : 1
trigger2_threshold_invert : False
trigger3_count_threshold : 1
trigger3_threshold_invert : False
trigger4_count_threshold : 1
trigger4_threshold_invert : False
trigger5_count_threshold : 1
trigger5_threshold_invert : False
trigger6_count_threshold : 1
trigger6_threshold_invert : False
trigger7_count_threshold : 1
trigger7_threshold_invert : False
trigger8_count_threshold : 1
trigger8_threshold_invert : False
trigger9_count_threshold : 1
trigger9_threshold_invert : False
upsample_rate_awg_path0 : 0
upsample_rate_awg_path1 : 0
cluster0_module8_sequencer3:
parameter value
--------------------------------------------------------------------------------
connect_acq : off
connect_out0 : off
cont_mode_en_awg_path0 : False
cont_mode_en_awg_path1 : False
cont_mode_waveform_idx_awg_path0 : 0
cont_mode_waveform_idx_awg_path1 : 0
demod_en_acq : False
gain_awg_path0 : 1
gain_awg_path1 : 1
integration_length_acq : 1024
marker_ovr_en : False
marker_ovr_value : 0
mixer_corr_gain_ratio : 1
mixer_corr_phase_offset_degree : -0
mod_en_awg : False
nco_freq : 0 (Hz)
nco_freq_cal_type_default : off (Hz)
nco_phase_offs : 0 (Degrees)
nco_prop_delay_comp : 0 (ns)
nco_prop_delay_comp_en : False (ns)
offset_awg_path0 : 0
offset_awg_path1 : 0
sync_en : False
thresholded_acq_marker_address : 1
thresholded_acq_marker_en : False
thresholded_acq_marker_invert : False
thresholded_acq_rotation : 0 (Degrees)
thresholded_acq_threshold : 0
thresholded_acq_trigger_address : 1
thresholded_acq_trigger_en : False
thresholded_acq_trigger_invert : False
trigger10_count_threshold : 1
trigger10_threshold_invert : False
trigger11_count_threshold : 1
trigger11_threshold_invert : False
trigger12_count_threshold : 1
trigger12_threshold_invert : False
trigger13_count_threshold : 1
trigger13_threshold_invert : False
trigger14_count_threshold : 1
trigger14_threshold_invert : False
trigger15_count_threshold : 1
trigger15_threshold_invert : False
trigger1_count_threshold : 1
trigger1_threshold_invert : False
trigger2_count_threshold : 1
trigger2_threshold_invert : False
trigger3_count_threshold : 1
trigger3_threshold_invert : False
trigger4_count_threshold : 1
trigger4_threshold_invert : False
trigger5_count_threshold : 1
trigger5_threshold_invert : False
trigger6_count_threshold : 1
trigger6_threshold_invert : False
trigger7_count_threshold : 1
trigger7_threshold_invert : False
trigger8_count_threshold : 1
trigger8_threshold_invert : False
trigger9_count_threshold : 1
trigger9_threshold_invert : False
upsample_rate_awg_path0 : 0
upsample_rate_awg_path1 : 0
cluster0_module8_sequencer4:
parameter value
--------------------------------------------------------------------------------
connect_acq : off
connect_out0 : off
cont_mode_en_awg_path0 : False
cont_mode_en_awg_path1 : False
cont_mode_waveform_idx_awg_path0 : 0
cont_mode_waveform_idx_awg_path1 : 0
demod_en_acq : False
gain_awg_path0 : 1
gain_awg_path1 : 1
integration_length_acq : 1024
marker_ovr_en : False
marker_ovr_value : 0
mixer_corr_gain_ratio : 1
mixer_corr_phase_offset_degree : -0
mod_en_awg : False
nco_freq : 0 (Hz)
nco_freq_cal_type_default : off (Hz)
nco_phase_offs : 0 (Degrees)
nco_prop_delay_comp : 0 (ns)
nco_prop_delay_comp_en : False (ns)
offset_awg_path0 : 0
offset_awg_path1 : 0
sync_en : False
thresholded_acq_marker_address : 1
thresholded_acq_marker_en : False
thresholded_acq_marker_invert : False
thresholded_acq_rotation : 0 (Degrees)
thresholded_acq_threshold : 0
thresholded_acq_trigger_address : 1
thresholded_acq_trigger_en : False
thresholded_acq_trigger_invert : False
trigger10_count_threshold : 1
trigger10_threshold_invert : False
trigger11_count_threshold : 1
trigger11_threshold_invert : False
trigger12_count_threshold : 1
trigger12_threshold_invert : False
trigger13_count_threshold : 1
trigger13_threshold_invert : False
trigger14_count_threshold : 1
trigger14_threshold_invert : False
trigger15_count_threshold : 1
trigger15_threshold_invert : False
trigger1_count_threshold : 1
trigger1_threshold_invert : False
trigger2_count_threshold : 1
trigger2_threshold_invert : False
trigger3_count_threshold : 1
trigger3_threshold_invert : False
trigger4_count_threshold : 1
trigger4_threshold_invert : False
trigger5_count_threshold : 1
trigger5_threshold_invert : False
trigger6_count_threshold : 1
trigger6_threshold_invert : False
trigger7_count_threshold : 1
trigger7_threshold_invert : False
trigger8_count_threshold : 1
trigger8_threshold_invert : False
trigger9_count_threshold : 1
trigger9_threshold_invert : False
upsample_rate_awg_path0 : 0
upsample_rate_awg_path1 : 0
cluster0_module8_sequencer5:
parameter value
--------------------------------------------------------------------------------
connect_acq : off
connect_out0 : off
cont_mode_en_awg_path0 : False
cont_mode_en_awg_path1 : False
cont_mode_waveform_idx_awg_path0 : 0
cont_mode_waveform_idx_awg_path1 : 0
demod_en_acq : False
gain_awg_path0 : 1
gain_awg_path1 : 1
integration_length_acq : 1024
marker_ovr_en : False
marker_ovr_value : 0
mixer_corr_gain_ratio : 1
mixer_corr_phase_offset_degree : -0
mod_en_awg : False
nco_freq : 0 (Hz)
nco_freq_cal_type_default : off (Hz)
nco_phase_offs : 0 (Degrees)
nco_prop_delay_comp : 0 (ns)
nco_prop_delay_comp_en : False (ns)
offset_awg_path0 : 0
offset_awg_path1 : 0
sync_en : False
thresholded_acq_marker_address : 1
thresholded_acq_marker_en : False
thresholded_acq_marker_invert : False
thresholded_acq_rotation : 0 (Degrees)
thresholded_acq_threshold : 0
thresholded_acq_trigger_address : 1
thresholded_acq_trigger_en : False
thresholded_acq_trigger_invert : False
trigger10_count_threshold : 1
trigger10_threshold_invert : False
trigger11_count_threshold : 1
trigger11_threshold_invert : False
trigger12_count_threshold : 1
trigger12_threshold_invert : False
trigger13_count_threshold : 1
trigger13_threshold_invert : False
trigger14_count_threshold : 1
trigger14_threshold_invert : False
trigger15_count_threshold : 1
trigger15_threshold_invert : False
trigger1_count_threshold : 1
trigger1_threshold_invert : False
trigger2_count_threshold : 1
trigger2_threshold_invert : False
trigger3_count_threshold : 1
trigger3_threshold_invert : False
trigger4_count_threshold : 1
trigger4_threshold_invert : False
trigger5_count_threshold : 1
trigger5_threshold_invert : False
trigger6_count_threshold : 1
trigger6_threshold_invert : False
trigger7_count_threshold : 1
trigger7_threshold_invert : False
trigger8_count_threshold : 1
trigger8_threshold_invert : False
trigger9_count_threshold : 1
trigger9_threshold_invert : False
upsample_rate_awg_path0 : 0
upsample_rate_awg_path1 : 0
Status: OKAY, Flags: NONE, Slot flags: NONE