See also
A Jupyter notebook version of this tutorial can be downloaded here
.
Coupled qubits characterization#
Note
This notebook uses some python helper functions and example data. You can find both in a zipfile accessible with this link: gitlab.
The experiments of this tutorial are meant to be executed with a Qblox Cluster controlling a flux-tunable transmon system.
The experiments can also be executed using a dummy Qblox device that is created via an instance of the Cluster
class, and is initialized with a dummy configuration. However, when using a dummy device, the analysis will not work because the experiments will return np.nan
values. In this case, example data is loaded from the "./example_data/"
directory.
Hardware setup#
In this section we configure the hardware configuration which specifies the connectivity of our system.
Configuration file#
This is a template hardware configuration file for a 2-qubit system (we name the qubits q0
and q1
), with dedicated flux-control lines.
The hardware setup is as follows, by cluster slot: 1. QCM-RF - Drive line for q0
using fixed 80 MHz IF. - Drive line for q1
using fixed 80 MHz IF. 2. QCM - Flux line for q0
. - Flux line for q1
. 6. QRM-RF - Shared readout line for q0
/q1
using a fixed LO set at 7.5 GHz.
Note that in the hardware configuration below the mixers are uncorrected, but for high fidelity experiments this should also be done for all the modules.
[1]:
hardware_cfg = {
"backend": "quantify_scheduler.backends.qblox_backend.hardware_compile",
"cluster0": {
"sequence_to_file": False, # Boolean flag which dumps waveforms and program dict to JSON file
"ref": "internal", # Use shared clock reference of the cluster
"instrument_type": "Cluster",
# ============ DRIVE ============#
"cluster0_module1": {
"instrument_type": "QCM_RF",
"complex_output_0": {
"output_att": 0,
"dc_mixer_offset_I": 0.0,
"dc_mixer_offset_Q": 0.0,
"portclock_configs": [
{
"port": "q0:mw",
"clock": "q0.01",
"interm_freq": 80e6,
"mixer_amp_ratio": 1.0,
"mixer_phase_error_deg": 0.0,
}
],
},
"complex_output_1": {
"output_att": 0,
"dc_mixer_offset_I": 0.0,
"dc_mixer_offset_Q": 0.0,
"portclock_configs": [
{
"port": "q1:mw",
"clock": "q1.01",
"interm_freq": 80e6,
"mixer_amp_ratio": 1.0,
"mixer_phase_error_deg": 0.0,
}
],
},
},
# ============ FLUX ============#
"cluster0_module2": {
"instrument_type": "QCM",
"real_output_0": {"portclock_configs": [{"port": "q0:fl", "clock": "cl0.baseband"}]},
"real_output_1": {"portclock_configs": [{"port": "q1:fl", "clock": "cl0.baseband"}]},
},
# ============ READOUT ============#
"cluster0_module3": {
"instrument_type": "QRM_RF",
"complex_output_0": {
"output_att": 0,
"input_att": 0,
"dc_mixer_offset_I": 0.0,
"dc_mixer_offset_Q": 0.0,
"lo_freq": 7.5e9,
"portclock_configs": [
{
"port": "q0:res",
"clock": "q0.ro",
"mixer_amp_ratio": 1.0,
"mixer_phase_error_deg": 0.0,
},
{
"port": "q1:res",
"clock": "q1.ro",
"mixer_amp_ratio": 1.0,
"mixer_phase_error_deg": 0.0,
},
],
},
},
},
}
Scan For Clusters#
We scan for the available clusters on our network using the Plug & Play functionality of the Qblox Instruments package (see Plug & Play for more info).
[2]:
import warnings
import ipywidgets as widgets
from IPython.display import display
from qblox_instruments import PlugAndPlay
warnings.simplefilter("ignore")
# Scan for available devices and display
with PlugAndPlay() as p:
# Get info of all devices
device_list = p.list_devices()
names = {dev_id: dev_info["description"]["name"] for dev_id, dev_info in device_list.items()}
names["dummy_cluster"] = "dummy_cluster"
ip_addresses = {dev_id: dev_info["identity"]["ip"] for dev_id, dev_info in device_list.items()}
# Create widget for names and ip addresses
connect = widgets.Dropdown(
options=[["Dummy-Cluster", "dummy_cluster"]]
+ [(f"{names[dev_id]} @{ip_addresses[dev_id]}", dev_id) for dev_id in device_list],
description="Select Device",
)
display(connect)
Connect to Cluster#
We now make a connection with the Cluster selected in the dropdown widget. We also define a function to find the modules we’re interested in. We select the readout and control module we want to use.
[3]:
from pathlib import Path
from qcodes import Instrument
from qblox_instruments import Cluster, ClusterType
# Close all existing QCoDeS Instrument instances
Instrument.close_all()
# Select the device
dev_id = connect.value
# Here we have the option to use a dummy device so that you can run your tests without a physical cluster
dummy_cfg = (
{
1: ClusterType.CLUSTER_QCM_RF,
2: ClusterType.CLUSTER_QCM,
3: ClusterType.CLUSTER_QRM_RF,
}
if dev_id == "dummy_cluster"
else None
)
cluster = Cluster(name="cluster0", identifier=ip_addresses.get(dev_id), dummy_cfg=dummy_cfg)
print(f"{connect.label} connected")
Dummy-Cluster connected
Reset the Cluster#
We reset the Cluster to enter a well-defined state. Note that resetting will clear all stored parameters and repeats startup calibration, so resetting between experiments is usually not desirable.
[4]:
cluster.reset()
print(cluster.get_system_state())
Status: CRITICAL, Flags: TEMPERATURE_OUT_OF_RANGE, Slot flags: SLOT1_TEMPERATURE_OUT_OF_RANGE, SLOT2_TEMPERATURE_OUT_OF_RANGE, SLOT3_TEMPERATURE_OUT_OF_RANGE
Note that a dummy cluster will raise error flags, this is expected behavior and can be ignored.
Experiment setup#
Quantum device settings#
Here we initialize our QuantumDevice
and our qubit parameters, checkout this tutorial for further details.
In short, a QuantumDevice
contains device elements where we save our found parameters.
[5]:
import contextlib
from quantify_scheduler.device_under_test.quantum_device import QuantumDevice
from quantify_scheduler.device_under_test.transmon_element import BasicTransmonElement
# Close QCoDeS instruments with conflicting names
for name in ["device_2q", "q0", "q1"]:
with contextlib.suppress(KeyError):
Instrument.find_instrument(name).close()
q0 = BasicTransmonElement("q0")
q0.measure.acq_channel(0)
q1 = BasicTransmonElement("q1")
q1.measure.acq_channel(1)
quantum_device = QuantumDevice("device_2q")
quantum_device.hardware_config(hardware_cfg)
quantum_device.add_element(q0)
quantum_device.add_element(q1)
Set calibrations#
This tutorial explicitly only deals with 2-qubit experiments. As such, we assume that both the qubits and their resonators have already been characterized. For information on how to do this, please see the single transmon qubit tutorial. In order to use this tutorial on your own system, you must first change the calibrated values to match your own system.
For the sake of this tutorial, we will use some template values for both qubits.
[6]:
from utils.tutorial_utils import show_parameters
# ============ READOUT ============ #
q0.reset.duration(100e-6)
q0.measure.acq_delay(100e-9)
q0.measure.pulse_amp(0.05)
q0.measure.pulse_duration(2e-6)
q0.measure.integration_time(1.9e-6)
q1.reset.duration(100e-6)
q1.measure.acq_delay(100e-9)
q1.measure.pulse_amp(0.05)
q1.measure.pulse_duration(2e-6)
q1.measure.integration_time(1.9e-6)
q0.clock_freqs.readout(7.6e9)
q1.clock_freqs.readout(7.7e9)
# ============ DRIVE ============ #
q0.rxy.amp180(0.1)
q0.rxy.motzoi(0.05)
q0.rxy.duration(40e-9)
q1.rxy.amp180(0.1)
q1.rxy.motzoi(0.05)
q1.rxy.duration(40e-9)
q0.clock_freqs.f01(5.1e9)
q1.clock_freqs.f01(5.2e9)
show_parameters(q0, q1)
Type Unit q0 q1
Parameter
pulse_type measure SquarePulse SquarePulse
pulse_amp measure 0.05 0.05
pulse_duration measure (s) 0.000002 0.000002
acq_channel measure (#) 0 1
acq_delay measure (s) 0.0000001 0.0000001
integration_time measure (s) 0.0000019 0.0000019
reset_clock_phase measure True True
acq_weights_a measure None None
acq_weights_b measure None None
acq_weights_sampling_rate measure None None
acq_weight_type measure SSB SSB
acq_rotation measure 0 0
acq_threshold measure 0 0
duration reset (s) 0.0001 0.0001
f01 clock_freqs (Hz) 5100000000.0 5200000000.0
f12 clock_freqs (Hz) NaN NaN
readout clock_freqs (Hz) 7600000000.0 7700000000.0
amp180 rxy 0.1 0.1
motzoi rxy 0.05 0.05
duration rxy (s) 0.00000004 0.00000004
microwave ports q0:mw q1:mw
flux ports q0:fl q1:fl
readout ports q0:res q1:res
Configure measurement control loop#
We will use a MeasurementControl
object for data acquisition as well as an InstrumentCoordinator
for controlling the instruments in our setup.
The PlotMonitor
is used for live plotting.
All of these are then associated with the QuantumDevice
.
[7]:
from quantify_core.measurement.control import MeasurementControl
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt as PlotMonitor
from quantify_scheduler.instrument_coordinator import InstrumentCoordinator
from quantify_scheduler.instrument_coordinator.components.qblox import ClusterComponent
def configure_measurement_control_loop(
device: QuantumDevice, cluster: Cluster, live_plotting: bool = False
) -> None:
# Close QCoDeS instruments with conflicting names
for name in [
"PlotMonitor",
"meas_ctrl",
"ic",
"ic_generic",
f"ic_{cluster.name}",
] + [f"ic_{module.name}" for module in cluster.modules]:
with contextlib.suppress(KeyError):
Instrument.find_instrument(name).close()
meas_ctrl = MeasurementControl("meas_ctrl")
ic = InstrumentCoordinator("ic")
# Add cluster to instrument coordinator
ic_cluster = ClusterComponent(cluster)
ic.add_component(ic_cluster)
if live_plotting:
# Associate plot monitor with measurement controller
plotmon = PlotMonitor("PlotMonitor")
meas_ctrl.instr_plotmon(plotmon.name)
# Associate measurement controller and instrument coordinator with the quantum device
device.instr_measurement_control(meas_ctrl.name)
device.instr_instrument_coordinator(ic.name)
return (meas_ctrl, ic)
meas_ctrl, instrument_coordinator = configure_measurement_control_loop(quantum_device, cluster)
Set data directory#
This directory is where all of the experimental data as well as all of the post processing will go.
[8]:
import quantify_core.data.handling as dh
# Enter your own dataset directory here!
dh.set_datadir(Path("example_data").resolve())
Configure external flux control#
We need to have some way of controlling the external flux.
This can be done by setting an output bias on a module of the cluster which is then connected to the flux-control line.
# e.g. nullify external flux by setting current to 0 A
cluster.module2.out0_current(0.0)
Here we are nullifying the external flux on both qubits.
[9]:
from utils.tutorial_utils import show_args
from quantify_scheduler.helpers.collections import find_port_clock_path
def find_flux_settable(qubit: BasicTransmonElement) -> callable:
"""Return flux port voltage offset for qubit."""
path = find_port_clock_path(
quantum_device.hardware_config(), qubit.ports.flux(), "cl0.baseband"
)
module = getattr(cluster, path[1].split("_")[1])
settable = getattr(module, f"out{path[2].split('_')[-1]}_offset")
return settable
flux_settables = {q.name: find_flux_settable(q) for q in (q0, q1)}
for flux_settable in flux_settables.values():
flux_settable(0.0)
show_args(flux_settables)
q0 = cluster0_module2_out0_offset
q1 = cluster0_module2_out1_offset
[10]:
flux_settables[q0.name](0.0) # enter your own value here for qubit 0
flux_settables[q1.name](0.0) # enter your own value here for qubit 1
Activate NCO delay compensation#
Compensate for the digital propagation delay for each qubit (i.e each sequencer)
For more info, please see: https://qblox-qblox-instruments.readthedocs-hosted.com/en/master/api_reference/sequencer.html#Sequencer.nco_prop_delay_comp
To avoid mismatches between modulation and demodulation, the delay between any readout frequency or phase changes and the next acquisition should be equal or greater than the total propagation delay (146ns + user defined value).
[11]:
for i in range(6):
getattr(cluster.module3, f"sequencer{i}").nco_prop_delay_comp_en(True)
getattr(cluster.module3, f"sequencer{i}").nco_prop_delay_comp(10)
Set attenuation#
We ought to make sure that our excitation and readout pulses have the appropriate power. Since we are assuming that the qubits and resonators have already been individually characterised, we use the same attenuation that we used in the single transmon qubit tutorial.
[12]:
from utils.tutorial_utils import set_drive_attenuation, set_readout_attenuation
set_readout_attenuation(quantum_device, q0, out_att=50, in_att=0)
set_readout_attenuation(quantum_device, q1, out_att=50, in_att=0)
set_drive_attenuation(quantum_device, q0, out_att=18)
set_drive_attenuation(quantum_device, q1, out_att=18)
Experiments#
As in the single qubit tuneup tutorial, the sweep setpoints for all experiments in this section are only examples. The sweep setpoints should be changed to match your own system. In this section we assume that each individual qubit has already been characterized, and that they have been biased to their sweetspots.
We will examine the flux response of the 2-qubit system. By “flux response” we mean the measured response of the system when the parameterization of a flux pulse is varied.
We consider two separate experiments which have their own separate parameterizations, they are:
Controlled phase calibration (a.k.a. two-qubit Chevron experiment)
Used to measure coupling strength between the two qubits.
Used to find the location of the \(|11\rangle \leftrightarrow |02\rangle\) avoided crossing.
Conditional oscillations
Used to measure the conditional phase of the controlled phase gate.
Used to estimate leakage to \(|02\rangle\).
Can also be used to measure single-qubit phases on the individual qubits.
In both of these experiments, we apply the flux pulse on the flux-control line of q1
(on top of the sweetspot bias) which we take to be the qubit with the higher frequency, i.e. \(\omega_1\) > \(\omega_0\).
Controlled phase calibration#
[13]:
import numpy as np
from quantify_scheduler.operations.gate_library import Measure, Reset, X
from quantify_scheduler.operations.pulse_library import SquarePulse
from quantify_scheduler.schedules.schedule import Schedule
def chevron_cz_sched(
lf_qubit: str,
hf_qubit: str,
amplitudes: np.ndarray,
duration: float,
flux_port: str = None,
repetitions: int = 1,
) -> Schedule:
"""https://quantify-quantify-scheduler.readthedocs-hosted.com/en/latest/autoapi/quantify_scheduler/schedules/two_qubit_transmon_schedules."""
sched = Schedule("Two-qubit Chevron CZ schedule", repetitions)
# Ensure amplitudes is an iterable when passing a float
amplitudes = np.asarray(amplitudes)
amplitudes = amplitudes.reshape(amplitudes.shape or (1,))
# Set flux port
flux_port = flux_port if flux_port is not None else f"{hf_qubit}:fl"
for acq_index, amp in enumerate(amplitudes):
# Reset to |00>
sched.add(Reset(lf_qubit, hf_qubit), label=f"Reset {acq_index}")
# Prepare |11>
excite_lf = sched.add(X(lf_qubit), label=f"X({lf_qubit}) {acq_index}")
sched.add(
X(hf_qubit),
ref_op=excite_lf,
ref_pt="start",
label=f"X({hf_qubit}) {acq_index}",
)
# Go to |11> <=> |02> avoided crossing and come back
sched.add(
SquarePulse(
amp=amp,
duration=duration,
port=flux_port,
clock="cl0.baseband",
),
label=f"SquarePulse({flux_port}) {acq_index}",
)
# Measure system
sched.add(
Measure(lf_qubit, hf_qubit, acq_index=acq_index),
label=f"Measure({lf_qubit},{hf_qubit}) {acq_index}",
)
return sched
[14]:
from qcodes.parameters import ManualParameter
from quantify_scheduler.gettables import ScheduleGettable
duration = ManualParameter(name="dur", unit="Hz", label="Duration of flux pulse")
amplitude = ManualParameter(name="amp", unit="", label="Amplitude of flux pulse")
amplitude.batched = True
duration.batched = False
chevron_cz_sched_kwargs = dict(
lf_qubit=q0.name, hf_qubit=q1.name, amplitudes=amplitude, duration=duration
)
gettable = ScheduleGettable(
quantum_device,
schedule_function=chevron_cz_sched,
schedule_kwargs=chevron_cz_sched_kwargs,
real_imag=False,
data_labels=[
"Magnitude lf qubit",
"Phase lf qubit",
"Magnitude hf qubit",
"Phase hf qubit",
],
batched=True,
num_channels=2,
)
meas_ctrl.gettables(gettable)
show_args(chevron_cz_sched_kwargs, "chevron_cz_sched_kwargs")
chevron_cz_sched_kwargs
=============
lf_qubit = q0
hf_qubit = q1
amplitudes = amp
duration = dur
[15]:
quantum_device.cfg_sched_repetitions(400)
duration_setpoints = np.arange(4e-9, 100e-9, 4e-9)
amplitude_setpoints = np.linspace(0.05, 0.2, 100)
meas_ctrl.settables([duration, amplitude])
meas_ctrl.setpoints_grid((duration_setpoints, amplitude_setpoints))
chevron_ds = meas_ctrl.run("chevron")
chevron_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
dur
Batched settable(s):
amp
Batch size limit: 1024
[15]:
<xarray.Dataset> Dimensions: (dim_0: 2400) Coordinates: x0 (dim_0) float64 4e-09 4e-09 4e-09 4e-09 ... 9.6e-08 9.6e-08 9.6e-08 x1 (dim_0) float64 0.05 0.05152 0.05303 0.05455 ... 0.197 0.1985 0.2 Dimensions without coordinates: dim_0 Data variables: y0 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y1 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y2 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y3 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan Attributes: tuid: 20231206-175340-589-c5e22a name: chevron grid_2d: True grid_2d_uniformly_spaced: True 1d_2_settables_uniformly_spaced: False xlen: 24 ylen: 100
[16]:
# If on dummy, override with old data for analysis
if dev_id == "dummy_cluster":
# NOTE: This dataset uses an old version of quantify which specified amplitude in volts.
chevron_ds = dh.to_gridded_dataset(dh.load_dataset(tuid="20230509-120110-134-51b044"))
[17]:
import matplotlib.pyplot as plt
fig, axs = plt.subplots(1, 2, figsize=plt.figaspect(1 / 2))
# plot only magnitude data of both channels for simplicity
chevron_ds.y0.plot(ax=axs[0])
chevron_ds.y2.plot(ax=axs[1])
axs[0].set_title("Low freq. qubit (q0)")
axs[1].set_title("High freq. qubit (q1)")
fig.suptitle("Controlled phase calibration")
fig.tight_layout()
Conditional oscillations#
[18]:
from typing import Literal
from quantify_scheduler.operations.gate_library import X90, Rxy
from quantify_scheduler.operations.pulse_library import SuddenNetZeroPulse
def conditional_oscillation_sched(
target_qubit: str,
control_qubit: str,
phases: np.array,
variant: Literal["OFF", "ON"],
snz_A: float,
snz_B: float,
snz_scale: float,
snz_dur: float,
snz_t_phi: float,
snz_t_integral_correction: float,
flux_port: str = None,
repetitions: int = 1,
) -> Schedule:
"""
Make a conditional oscillation schedule to measure conditional phase.
Parameters
----------
target_qubit
The name of a qubit, e.g., "q0", the qubit with lower frequency.
control_qubit
The name of coupled qubit, the qubit with the higher frequency.
phases
An array (or scalar) of recovery phases in degrees.
variant
A string specifying whether to excite the control qubit.
snz_A
Unitless amplitude of the main square pulse.
snz_B
Unitless scaling correction for the final sample of the first
square and first sample of the second square pulse.
snz_scale
Amplitude scaling correction factor of the negative arm of the net-zero pulse.
snz_dur
The total duration of the two half square pulses.
snz_t_phi
The idling duration between the two half pulses.
snz_t_integral_correction
The duration in which any non-zero pulse amplitude needs to be corrected.
flux_port
An optional string for a flux port. Default is hf_qubit flux port.
repetitions
The amount of times the Schedule will be repeated.
Returns
-------
:
An experiment schedule.
"""
sched = Schedule(f"ConditionalOscillation({variant})", repetitions)
# Ensure phases is an iterable when passing a float
phases = np.asarray(phases)
phases = phases.reshape(phases.shape or (1,))
# Ensure that variant is uppercase for switch
variant = str.upper(variant)
if variant not in {"OFF", "ON"}:
raise ValueError("Schedule variant should be 'OFF' or 'ON'.")
# Set flux port
flux_port = flux_port if flux_port is not None else f"{control_qubit}:fl"
for acq_index, phi in enumerate(phases):
# Reset to |00>
sched.add(Reset(target_qubit, control_qubit))
# Apply a pi/2 pulse on the target qubit
targ_eq_ref = sched.add(X90(target_qubit))
if variant == "ON":
# Also apply a pi pulse on the control qubit
sched.add(X(control_qubit), ref_op=targ_eq_ref, ref_pt="start")
# Go to |11> <=> |02> avoided crossing on positive & negative sides
# using the SuddenNetZeroPulse
sched.add(
SuddenNetZeroPulse(
amp_A=snz_A,
amp_B=snz_B,
net_zero_A_scale=snz_scale,
t_pulse=snz_dur,
t_phi=snz_t_phi,
t_integral_correction=snz_t_integral_correction,
port=flux_port,
clock="cl0.baseband",
)
)
# Apply a pi/2 recovery pulse on the target qubit
targ_rec_ref = sched.add(Rxy(theta=90.0, phi=phi, qubit=target_qubit))
if variant == "ON":
# Also apply a pi pulse on the control qubit
sched.add(X(control_qubit), ref_op=targ_rec_ref, ref_pt="start")
# Measure system
sched.add(Measure(target_qubit, control_qubit, acq_index=acq_index))
return sched
[19]:
phase = ManualParameter(name="ph", unit="deg", label="Recovery phase")
flux_pulse_amplitude = ManualParameter(name="A", unit="", label="Flux pulse amplitude")
scaling_correction = ManualParameter(name="B", unit="", label="Scaling correction")
phase.batched = True
flux_pulse_amplitude.batched = False
scaling_correction.batched = False
conditional_oscillation_sched_kwargs = dict(
target_qubit=q0.name,
control_qubit=q1.name,
phases=phase,
snz_A=flux_pulse_amplitude,
snz_B=scaling_correction,
snz_scale=1.0,
snz_dur=40e-9,
snz_t_phi=4e-9,
snz_t_integral_correction=0.0,
)
gettable_off = ScheduleGettable(
quantum_device,
conditional_oscillation_sched,
schedule_kwargs={**conditional_oscillation_sched_kwargs, **{"variant": "OFF"}},
real_imag=False,
batched=True,
num_channels=2,
)
gettable_on = ScheduleGettable(
quantum_device,
conditional_oscillation_sched,
schedule_kwargs={**conditional_oscillation_sched_kwargs, **{"variant": "ON"}},
real_imag=False,
batched=True,
num_channels=2,
)
meas_ctrl.gettables((gettable_off, gettable_on))
show_args(conditional_oscillation_sched_kwargs, title="conditional_oscillation_sched_kwargs")
conditional_oscillation_sched_kwargs
==============================
target_qubit = q0
control_qubit = q1
phases = ph
snz_A = A
snz_B = B
snz_scale = 1.0
snz_dur = 4e-08
snz_t_phi = 4e-09
snz_t_integral_correction = 0.0
[20]:
quantum_device.cfg_sched_repetitions(400)
meas_ctrl.settables([phase, flux_pulse_amplitude, scaling_correction])
meas_ctrl.setpoints_grid((np.linspace(0.0, 360.0, 60), [0.8], [0.5]))
cond_osc_ds = meas_ctrl.run("conditional oscillation")
cond_osc_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
A, B
Batched settable(s):
ph
Batch size limit: 60
[20]:
<xarray.Dataset> Dimensions: (dim_0: 60) Coordinates: x0 (dim_0) float64 0.0 6.102 12.2 18.31 ... 341.7 347.8 353.9 360.0 x1 (dim_0) float64 0.8 0.8 0.8 0.8 0.8 0.8 ... 0.8 0.8 0.8 0.8 0.8 0.8 x2 (dim_0) float64 0.5 0.5 0.5 0.5 0.5 0.5 ... 0.5 0.5 0.5 0.5 0.5 0.5 Dimensions without coordinates: dim_0 Data variables: y0 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y1 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y2 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y3 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y4 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y5 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y6 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan y7 (dim_0) float64 nan nan nan nan nan nan ... nan nan nan nan nan nan Attributes: tuid: 20231206-175356-030-2b70af name: conditional oscillation grid_2d: False grid_2d_uniformly_spaced: False 1d_2_settables_uniformly_spaced: False
[21]:
# If on dummy, override with old data for analysis
if dev_id == "dummy_cluster":
cond_osc_ds = dh.to_gridded_dataset(dh.load_dataset(tuid="20230509-164908-713-788626"))
[22]:
from utils.tutorial_analysis_classes import ConditionalOscillationAnalysis
cond_osc_analysis = ConditionalOscillationAnalysis(
tuid=cond_osc_ds.attrs["tuid"], dataset=cond_osc_ds
)
cond_osc_analysis.run().display_figs_mpl()
[23]:
show_parameters(q0, q1)
Type Unit q0 q1
Parameter
pulse_type measure SquarePulse SquarePulse
pulse_amp measure 0.05 0.05
pulse_duration measure (s) 0.000002 0.000002
acq_channel measure (#) 0 1
acq_delay measure (s) 0.0000001 0.0000001
integration_time measure (s) 0.0000019 0.0000019
reset_clock_phase measure True True
acq_weights_a measure None None
acq_weights_b measure None None
acq_weights_sampling_rate measure None None
acq_weight_type measure SSB SSB
acq_rotation measure 0 0
acq_threshold measure 0 0
duration reset (s) 0.0001 0.0001
f01 clock_freqs (Hz) 5100000000.0 5200000000.0
f12 clock_freqs (Hz) NaN NaN
readout clock_freqs (Hz) 7600000000.0 7700000000.0
amp180 rxy 0.1 0.1
motzoi rxy 0.05 0.05
duration rxy (s) 0.00000004 0.00000004
microwave ports q0:mw q1:mw
flux ports q0:fl q1:fl
readout ports q0:res q1:res
[24]:
import rich
rich.print(quantum_device.hardware_config())
{ 'backend': 'quantify_scheduler.backends.qblox_backend.hardware_compile', 'cluster0': { 'sequence_to_file': False, 'ref': 'internal', 'instrument_type': 'Cluster', 'cluster0_module1': { 'instrument_type': 'QCM_RF', 'complex_output_0': { 'output_att': 18, 'dc_mixer_offset_I': 0.0, 'dc_mixer_offset_Q': 0.0, 'portclock_configs': [ { 'port': 'q0:mw', 'clock': 'q0.01', 'interm_freq': 80000000.0, 'mixer_amp_ratio': 1.0, 'mixer_phase_error_deg': 0.0 } ] }, 'complex_output_1': { 'output_att': 18, 'dc_mixer_offset_I': 0.0, 'dc_mixer_offset_Q': 0.0, 'portclock_configs': [ { 'port': 'q1:mw', 'clock': 'q1.01', 'interm_freq': 80000000.0, 'mixer_amp_ratio': 1.0, 'mixer_phase_error_deg': 0.0 } ] } }, 'cluster0_module2': { 'instrument_type': 'QCM', 'real_output_0': {'portclock_configs': [{'port': 'q0:fl', 'clock': 'cl0.baseband'}]}, 'real_output_1': {'portclock_configs': [{'port': 'q1:fl', 'clock': 'cl0.baseband'}]} }, 'cluster0_module3': { 'instrument_type': 'QRM_RF', 'complex_output_0': { 'output_att': 50, 'input_att': 0, 'dc_mixer_offset_I': 0.0, 'dc_mixer_offset_Q': 0.0, 'lo_freq': 7500000000.0, 'portclock_configs': [ {'port': 'q0:res', 'clock': 'q0.ro', 'mixer_amp_ratio': 1.0, 'mixer_phase_error_deg': 0.0}, {'port': 'q1:res', 'clock': 'q1.ro', 'mixer_amp_ratio': 1.0, 'mixer_phase_error_deg': 0.0} ] } } } }