QRM
===
.. _qrm_description:
Description
------------
The Qubit Readout Module (QRM) is an instrument designed for performing qubit
readout. The front of a QRM module is presented below:
.. figure:: ./figures/QBLOX_CLUSTER_FRONTAL_QRM.jpg
:height: 600px
:align: left
:alt: Front Panel of QCM.
On the front of a QRM module you will find the following components:
- **4 x SMA female (receptacle) connectors**: 2 outputs (O\ :sup:`[1-2]`: 1 Vpp @ 50 Ω) ; and 2 input channels (I\ :sup:`[1-2]`: 2 Vpp @ 50 Ω).
- **4 x SMP male (pin) connectors**: Marker output channels (0-3.3 V TTL).
- **6 x status LEDs**: See section :ref:`cluster_leds` for details.
These input paths use two processing paths (from here
on also referred to as path 0 and 1). The module has 6 Q1 sequencers (:ref:`sequence_processor`)
on board with the following architecture:
.. figure:: ./figures/qrm_sequencer.svg
:width: 800px
:align: center
:alt: QRM sequencer architecture.
Each sequencer is connected to each marker and each sequencer can
access the outputs and inputs of the device across their respective paths.
In the case of the QRM, each sequence processor has control over one AWG and
one acquisition path.
Using parametrization, each sequencer can target one qubit for readout, allowing
multiplexed readout of multiple qubits on the same channel. The AWG can
generate the readout pulses and the acquisition paths can process the returned
readout data. The acquisition path supports three acquisition modes:
- `Scope`: Returns the raw input data.
- `Integration`: Returns the result after integrating the input data;
optionally based on an integration function stored in memory.
- `Thresholded`: Returns the binary qubit value after thresholding
the integrated value.
The results of the acquisitions are returned to the user through the
qblox_instruments driver.
For a list of available features please go to :ref:`qrm_features`
For an overview of applications please go to :ref:`qrm_applications`
Block Diagram
-------------
.. figure:: ./figures/QRM_Block_Diagram.svg
:alt: Block diagram of a Qubit Readout Module
.. list-table::
:widths: 100 100
:header-rows: 0
* - :ref:`qrm_10MHz_reference`
- :ref:`qrm_trigger`
* - :ref:`qrm_SYNQ`
- :ref:`qrm_LINQ`
* - :ref:`qrm_Q1_sequencers`
- :ref:`qrm_marker_output_channels`
* - :ref:`qrm_sequencer_multiplexer`
- :ref:`qrm_digital_offset`
* - :ref:`qrm_DAC`
- :ref:`qrm_offset_DAC`
* - :ref:`qrm_input_gain`
-
.. _qrm_features:
Features
--------
.. _qrm_10MHz_reference:
1. 10 MHz Reference
^^^^^^^^^^^^^^^^^^^
Alongside all modules available, the QRM baseband module operates with respect
to a 10 MHz reference provided by the cluster.
.. _qrm_trigger:
2. Trigger
^^^^^^^^^^
The trigger of the QRM is connected to the cluster and allows for fast
synchronization between modules.
.. _qrm_SYNQ:
3. SYNQ
^^^^^^^^^^^^^^^^^
The Qblox SYNQ technology enables simple and quick synchronization over multiple
instruments, allowing for modules to be started synchronously << 1ns.
See section :ref:`synchronization` for more information.
.. _qrm_LINQ:
4. LINQ
^^^^^^^
The Qblox LINQ technology allows for the results of measurements to be shared
between devices, distributing outcomes in < 320 ns.
.. _qrm_Q1_sequencers:
5. Q1 Sequencers
^^^^^^^^^^^^^^^^
The Q1 sequencers are the heart(s) of the QRM instrument. They orchestrate the
experiment using a custom low-latency sequence processor specifically designed
for quantum experiments. Each sequencer controls a dedicated AWG path and, in
the case of a QRM/QRM-RF, an acquisition path, which enables
parametrized pulse generation and readout. Each QRM has 6 of these sequencers
to target multiple qubits with one instrument. See section
:ref:`sequence_processor` for more information on how to program and
control them, as well as a list of available features that each
sequencer provides.
Each sequencer has a dedicated gain step for both path 0 and 1, which can be
statically configured using the :meth:`Sequencer.gain_awg_path0` parameters.
However, the gain can also be dynamically controlled using the `set_awg_gain`
instruction of the sequence processor which enables pulse parametrization
(see section :ref:`sequence_processor_operation_instructions`). The static and
dynamic gain controls are complementary.
.. note::
If modulated IQ signals are used for an output pair, the gain
:meth:`Sequencer.gain_awg_path0` has to be the same for both paths.
Each sequencer has a dedicated numerically controlled oscillator (NCO). This
NCO can be used to track the qubit phase (at a fixed frequency). This NCO can
be swept from -500 MHz to 500 MHz
The frequency of the NCO and phase can be statically controlled using the
:meth:`Sequencer.nco_freq` and :meth:`Sequencer.nco_phase_offs`
parameters. However, the phase of the NCO can also be dynamically controlled
using the `set_freq`, `reset_ph`, `set_ph`, and `set_ph_delta` instructions of
the sequence processor, which enables
pulse parametrization and execution of virtual Z-gates
(see section :ref:`sequence_processor_operation_instructions`). The static and
dynamic phase control
is complementary. The modulation is enabled using the
:meth:`Sequencer.mod_en_awg` parameter. The demodulation is enabled using
the :meth:`Sequencer.demod_en_acq` parameter.
Each sequencer can perform averaging and binning of measurement
of results. Integration and state assignment of data can also be
performed on board, outcomes of these measurements can then be shared via LINQ
within 200ns.
.. _qrm_marker_output_channels:
6. Marker output channels
^^^^^^^^^^^^^^^^^^^^^^^^^
Each sequencer has control over the four marker output channels, with the
control of each sequencer being OR'ed to create the final marker outputs.
The markers can
be dynamically controlled with the `set_mrk` instruction of the sequence
processor (see section :ref:`sequence_processor_operation_instructions`), but can
also, be overwritten with the static marker overwrite parameters
:meth:`Sequencer.marker_ovr_en` and :meth:`Sequencer.marker_ovr_value`.
The marker output range is 0-3.3 V TTL. In RF modules `set_mrk`
is also used to toggle the switches before the outputs/inputs to enable
the respective output/input.
6.1 Setting Markers as Active HIGH/LOW
**************************************
The default state of marker is active high `(OFF = 0 V, ON = 3.3 V)`. Users
have the ability to change the marker output from active HIGH to active LOW `( OFF = 3.3 V, ON = 0 V)`. It can be done
using the parameter :meth:`QRM.marker0_inv_en`. This inversion of marker default states is possible for all marker
channels.
.. _qrm_sequencer_multiplexer:
7. Sequencer Multiplexer
^^^^^^^^^^^^^^^^^^^^^^^^
A multiplexer that allows any sequencer to be connected to any output.
Multiple sequencers can also be connected to a single output. This, in
combination with the dedicated NCO per sequencer and an external IQ mixing circuit, enables easy and
flexible targeting of multiple resonators on a single channel.
See :ref:`sequence_processor_multiplexing` for more details.
.. note::
The output of each sequencer is complimentary. Be aware of potential output
clipping when connecting multiple sequencers to a single output.
.. _qrm_digital_offset:
8. Digital Offset
^^^^^^^^^^^^^^^^^
Each sequencer has a dedicated offset step for both path 0 and 1, which can be
statically configured using the :meth:`Sequencer.offset_awg_path0` parameters.
However, the offset can also be dynamically controlled using the `set_awg_offs`
instruction of the sequence processor which enables pulse parametrization.
(see section :ref:`sequence_processor_operation_instructions`). The static and dynamic
offset controls are complementary.
.. note::
This offset is applied to the signals before the mixer and cannot be used
for DC offset correction if the mixer is enabled.
.. _qrm_DAC:
9. DAC
^^^^^^
The maximum output and input range of the QRM is 1 Vpp and it is 50 Ω terminated.
.. _qrm_offset_DAC:
10. ADC
^^^^^^^
The maximum input range of the QRM's ADCs is 2 Vpp and 50 Ω terminated.
.. note::
The 12-bit ADCs have a fixed range of 2 Vpp. When performing acquisitions
the input should be an order of magnitude such that the resolution (0.5mV)
of the ADC can accurately define the measured signal.
Gain or attenuation stages may be required at the input to compensate for
this.
.. _qrm_input_gain:
11. Input gain
^^^^^^^^^^^^^^
Dedicated amplifiers provide additional gain to the input signals. The gain
can vary between -6 dB and 26 dB and can be set using the :meth:`QRM.in0_gain`
parameters.
.. _qrm_applications:
Applications
----------------
The qubit readout module (QRM) is designed for the measurement of qubits.
The experimental setup will vary depending on the device being measured:
Superconducting Qubits
^^^^^^^^^^^^^^^^^^^^^^
The QRM can be utilized to create a readout pulse with its outputs and corresponding acquisition
for a multi qubit device. Frequency division multiplexing can be utilized to readout
multiple qubit states simultaneously. The outputs of a QRM can also be utilized as arbitrary
outputs (e.g. for a charge line) if needed. The baseband of the QRM module will not be able to synthesize
frequencies in the range required for readout, and as such a QRM-RF module or, alternatively, an external rf
conversion circuit will be required. The details of such a setup are provided
here: |qrm_superconducting_qubits|.
.. |qrm_superconducting_qubits| raw:: html
Superconducting Qubits
Spin Qubits
^^^^^^^^^^^
The QRM provides readout utility for measuring spin qubits in GaAs, Si or Ge
quantum dots. The QRM is capable of performing qubit measurements via charge
sensing, RF reflectometry, gate-based readout, or microwave resonators.
The signal of the baseband QRM module should be upconverted using an external rf
conversion circuit to reach the microwave readout regime. Alternatively, a QRM-RF module can be used.
Details of potential setups and applications are available here:
|qrm_spin_qubits|.
.. |qrm_spin_qubits| raw:: html
Spin Qubits
NV-centers/Spins in Diamonds
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The QRM can also be used to perform measurements on spins in diamond by acquiring analog and digital signals
from single photon detectors and perform trigger counting on these signals to determine the number of emitted photons.
These results can be shared using the LINQ protocol and thresholded for conditional operation on any other module in the cluster.
Additionally, the QRM can also perform measurements through the connection to a qubit's microwave resonator.
The signal of the baseband QRM module should be upconverted using an external rf
conversion circuit to reach the microwave readout regime. Alternatively, a QRM-RF module can be used.
Details of potential setups and
applications are available here :
|qrm_nv_qubits|.
.. |qrm_nv_qubits| raw:: html
NV-centers
.. _qrm_Abs_max_rat:
Absolute Maximum Ratings
------------------------
.. warning::
This section shows the absolute maximum ratings of the cluster QRM module. Operation beyond these values can damage the module and cluster!
+-----------------------------+----------------+-------+-------+--------+
| Parameter | Condition | Min | Typ | Max |
+=============================+================+=======+=======+========+
| Voltage applied to output | | -5V | | +5V |
+-----------------------------+----------------+-------+-------+--------+
| Voltage applied to input | | -2.5V | | +2.5V |
+-----------------------------+----------------+-------+-------+--------+
| Marker load impedance | | 66Ω | | |
+-----------------------------+----------------+-------+-------+--------+
.. _qrm_specs:
Specifications
--------------
Output
^^^^^^
+-----------------------------+----------------+-----+-------+--------+
| Parameter | Condition | Min | Typ | Max |
+=============================+================+=====+=======+========+
| Number of channels | | | 2 | |
+-----------------------------+----------------+-----+-------+--------+
| Output coupling | | | DC | |
+-----------------------------+----------------+-----+-------+--------+
| Resolution | | | 12bits| |
+-----------------------------+----------------+-----+-------+--------+
| Output impedance | | | 50Ω | |
+-----------------------------+----------------+-----+-------+--------+
| Output range | In 50Ω load | | | +-0.5V|
+-----------------------------+----------------+-----+-------+--------+
Input
^^^^^
+-----------------------------+------------------------+----------+-------+------+
| Parameter | Condition | Min | Typ | Max |
+=============================+========================+==========+=======+======+
| Number of channels | | | 2 | |
+-----------------------------+------------------------+----------+-------+------+
| Input coupling | | | DC | |
+-----------------------------+------------------------+----------+-------+------+
| Resolution | | | 12bits| |
+-----------------------------+------------------------+----------+-------+------+
| Input impedance | | | 50Ω | |
+-----------------------------+------------------------+----------+-------+------+
| Input range | settable amplification | +-0.025V | | +-1V |
+-----------------------------+------------------------+----------+-------+------+
Marker Outputs
^^^^^^^^^^^^^^
+-----------------------------+----------------+-----+------+--------+
| Parameter | Condition | Min | Typ | Max |
+=============================+================+=====+======+========+
| Number of markers | | | 4 | |
+-----------------------------+----------------+-----+------+--------+
| High voltage |in high Z load | | 3.3V | |
+-----------------------------+----------------+-----+------+--------+
| Low voltage | | | 0.0V | |
+-----------------------------+----------------+-----+------+--------+
.. _qrm_typical:
Typical Performance
-------------------
Output
^^^^^^
+-------------------------------------+--------------+---------------------------------------------------------------+
| Parameter | Value | Test specifics |
+=====================================+==============+===============================================================+
| Voltage range | +-0.5 V | Measured with a 1MHz block wave in 50Ω load |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Rise/Fall time | <1.3 ns | Measured with a 1V step in 50Ω load, 10% - 90% |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Settling time | <8 ns | Measured with a 1V step in 50Ω load, settled within +-1% |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Overshoot | <1% | Measured with a 1V step in 50Ω load |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Crosstalk step | <-75 dB | Measured with a 1V step in 50Ω load |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Crosstalk sine | <-70 dB | Measured with a 100MHz 1Vpp sine wave in 50Ω load |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Frequency response | >300 MHz | Bandwidth (-4dB) |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Frequency response | >400 MHz | Bandwidth (-7dB) |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Wideband noise | <5 nV/sqrtHz | Noise measured at 121Mhz with 1kHz band and 0V output |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Output RMS noise | <70 uVrms | Based on bandwidth and wideband noise |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Signal to noise ratio | >87 dB | Based on the output RSM voltage O8 |
+-------------------------------------+--------------+---------------------------------------------------------------+
| Total harmonic distortion | THD <0.0012 | Measured at 100MHz sine wave up to the fifth harmonic |
+-------------------------------------+--------------+---------------------------------------------------------------+
| HD2 | HD2 <-59 dBc | Measured at 100MHz sine wave up to the fifth harmonic |
+-------------------------------------+--------------+---------------------------------------------------------------+
| HD3 | HD3 <-60 dBc | Measured at 100MHz sine wave up to the fifth harmonic |
+-------------------------------------+--------------+---------------------------------------------------------------+
Input
^^^^^
+------------------------------------+----------------+---------------------------+
| Parameter | Value | Test specifics |
+====================================+================+===========================+
| Voltage range | +-1 V | |
+------------------------------------+----------------+---------------------------+
| Rise/Fall time | 1.5 ns | 10% to 90% |
+------------------------------------+----------------+---------------------------+
| Overshoot rise | 1.8% | |
+------------------------------------+----------------+---------------------------+
| Overshoot fall | 4% | |
+------------------------------------+----------------+---------------------------+
| Settling time | 30 ns | Settled within +-1% |
+------------------------------------+----------------+---------------------------+
| Input-input crosstalk | <-90 dB | |
+------------------------------------+----------------+---------------------------+
| Frequency response | >350 MHz | Bandwidth (-3dB) |
+------------------------------------+----------------+---------------------------+
| Frequency response | >450 MHz | Bandwidth (-5dB) |
+------------------------------------+----------------+---------------------------+
| Low frequency noise at -6 dB gain | 500 uVpp | 0.1-10 Hz integrated |
+------------------------------------+----------------+---------------------------+
| Low frequency noise at 26 dB gain | <20 uVpp | 0.1-10 Hz integrated |
+------------------------------------+----------------+---------------------------+
| Harmonic distortion HD2 | <= -63 dBc | ~1 dBm input |
+------------------------------------+----------------+---------------------------+
| Harmonic distortion HD3 | <= -65 dBc | ~1 dBm input |
+------------------------------------+----------------+---------------------------+
| SNR -6 dB gain | ~60 dB | |
+------------------------------------+----------------+---------------------------+
| SNR 26 dB gain | ~50 dB | |
+------------------------------------+----------------+---------------------------+
| Wideband noise at -6 dB gain | < 43 nV/sqrtHz | At 100 MHz |
+------------------------------------+----------------+---------------------------+
| Wideband noise at 26 dB gain | < 4 nV/sqrtHz | At 100 MHz |
+------------------------------------+----------------+---------------------------+
| Wideband noise at -6 dB gain | <700 uVrms | integrated over 300 MHz |
+------------------------------------+----------------+---------------------------+
| Wideband noise at 26 dB gain | <60 uVrms | integrated over 300 MHz |
+------------------------------------+----------------+---------------------------+