{ "cells": [ { "cell_type": "markdown", "id": "c0cde019", "metadata": {}, "source": [ "# Coupled qubits characterization\n", "\n", "The experiments of this tutorial are meant to be executed with a Qblox Cluster controlling a flux-tunable transmon system.\n", "\n", "The experiments can also be executed using a dummy Qblox device that is created via an instance of the `Cluster` class, and is initialized with a dummy configuration. However, when using a dummy device, the analysis will not work because the experiments will return `np.nan` values." ] }, { "cell_type": "markdown", "id": "0c4a8f81", "metadata": {}, "source": [ "## Hardware setup\n", "In this section we configure the hardware configuration which specifies the connectivity of our system." ] }, { "cell_type": "markdown", "id": "507400de", "metadata": {}, "source": [ "### Configuration file\n", "\n", "This is a template hardware configuration file for a 2-qubit system (we name the qubits `q0` and `q1`), with dedicated flux-control lines.\n", "\n", "The hardware setup is as follows, by cluster slot:\n", "- **QCM-RF** (Slot 6)\n", " - Drive line for `q0` using fixed 80 MHz IF.\n", " - Drive line for `q1` using fixed 80 MHz IF.\n", "- **QCM** (Slot 2)\n", " - Flux line for `q0`.\n", " - Flux line for `q1`.\n", "- **QRM-RF** (Slot 8)\n", " - Shared readout line for `q0`/`q1` using a fixed LO set at 7.5 GHz.\n", "\n", "Note that in the hardware configuration below the mixers are uncorrected, but for high fidelity experiments this should also be done for all the modules." ] }, { "cell_type": "code", "execution_count": 1, "id": "31f1cd12", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:15.670812Z", "iopub.status.busy": "2024-09-18T14:58:15.670189Z", "iopub.status.idle": "2024-09-18T14:58:15.677902Z", "shell.execute_reply": "2024-09-18T14:58:15.677282Z" } }, "outputs": [], "source": [ "import json\n", "\n", "import rich\n", "\n", "with open(\"configs/tuning_transmon_coupled_pair_hardware_config.json\") as hw_cfg_json_file:\n", " hardware_cfg = json.load(hw_cfg_json_file)" ] }, { "cell_type": "markdown", "id": "056d93c7", "metadata": {}, "source": [ "### Scan For Clusters\n", "\n", "We scan for the available devices connected via ethernet using the Plug & Play functionality of the Qblox Instruments package (see [Plug & Play](https://qblox-qblox-instruments.readthedocs-hosted.com/en/main/api_reference/tools.html#api-pnp) for more info)." ] }, { "cell_type": "code", "execution_count": 2, "id": "4f6d4a8c", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:15.679900Z", "iopub.status.busy": "2024-09-18T14:58:15.679729Z", "iopub.status.idle": "2024-09-18T14:58:17.673407Z", "shell.execute_reply": "2024-09-18T14:58:17.669764Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "No devices found\r\n" ] } ], "source": [ "!qblox-pnp list" ] }, { "cell_type": "code", "execution_count": 3, "id": "ae093e6d", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:17.680556Z", "iopub.status.busy": "2024-09-18T14:58:17.680351Z", "iopub.status.idle": "2024-09-18T14:58:17.683558Z", "shell.execute_reply": "2024-09-18T14:58:17.682919Z" } }, "outputs": [], "source": [ "cluster_ip = None # To run this tutorial on hardware, fill in the IP address of the cluster here\n", "cluster_name = \"cluster0\"" ] }, { "cell_type": "markdown", "id": "198df52a", "metadata": {}, "source": [ "### Connect to Cluster\n", "\n", "We now make a connection with the Cluster." ] }, { "cell_type": "code", "execution_count": 4, "id": "a95499a7", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:17.685403Z", "iopub.status.busy": "2024-09-18T14:58:17.685231Z", "iopub.status.idle": "2024-09-18T14:58:18.592184Z", "shell.execute_reply": "2024-09-18T14:58:18.591402Z" }, "lines_to_next_cell": 2 }, "outputs": [], "source": [ "from qcodes.instrument import find_or_create_instrument\n", "\n", "from qblox_instruments import Cluster, ClusterType\n", "\n", "cluster = find_or_create_instrument(\n", " Cluster,\n", " recreate=True,\n", " name=cluster_name,\n", " identifier=cluster_ip,\n", " dummy_cfg=(\n", " {\n", " 2: ClusterType.CLUSTER_QCM,\n", " 4: ClusterType.CLUSTER_QRM,\n", " 6: ClusterType.CLUSTER_QCM_RF,\n", " 8: ClusterType.CLUSTER_QRM_RF,\n", " }\n", " if cluster_ip is None\n", " else None\n", " ),\n", ")" ] }, { "cell_type": "markdown", "id": "844e9738", "metadata": {}, "source": [ "## Experiment setup" ] }, { "cell_type": "markdown", "id": "30aba6a8", "metadata": {}, "source": [ "### Quantum device settings\n", "Here we initialize our `QuantumDevice` and our qubit parameters, checkout this [tutorial](https://quantify-os.org/docs/quantify-scheduler/dev/tutorials/Operations%20and%20Qubits.html) for further details.\n", "\n", "In short, a `QuantumDevice` contains device elements where we save our found parameters.\n", "\n", "This tutorial explicitly only deals with 2-qubit experiments. As such, we assume that both the qubits and their resonators have already been characterized. For information on how to do this, please see the single transmon qubit tutorial." ] }, { "cell_type": "code", "execution_count": 5, "id": "a7223c51", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:18.594644Z", "iopub.status.busy": "2024-09-18T14:58:18.594392Z", "iopub.status.idle": "2024-09-18T14:58:19.702918Z", "shell.execute_reply": "2024-09-18T14:58:19.700683Z" }, "lines_to_next_cell": 2 }, "outputs": [], "source": [ "from quantify_scheduler.device_under_test.quantum_device import QuantumDevice\n", "\n", "quantum_device = QuantumDevice.from_json_file(\"devices/transmon_device_2q.json\")\n", "q0 = quantum_device.get_element(\"q0\")\n", "q1 = quantum_device.get_element(\"q1\")\n", "quantum_device.hardware_config(hardware_cfg)" ] }, { "cell_type": "markdown", "id": "0dc0be18", "metadata": {}, "source": [ "### Configure measurement control loop\n", "We will use a `MeasurementControl` object for data acquisition as well as an `InstrumentCoordinator` for controlling the instruments in our setup.\n", "\n", "The `PlotMonitor` is used for live plotting.\n", "\n", "All of these are then associated with the `QuantumDevice`." ] }, { "cell_type": "code", "execution_count": 6, "id": "8702a4f8", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:19.709768Z", "iopub.status.busy": "2024-09-18T14:58:19.708629Z", "iopub.status.idle": "2024-09-18T14:58:19.936658Z", "shell.execute_reply": "2024-09-18T14:58:19.935997Z" } }, "outputs": [], "source": [ "from quantify_core.measurement.control import MeasurementControl\n", "from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt as PlotMonitor\n", "from quantify_scheduler.instrument_coordinator import InstrumentCoordinator\n", "from quantify_scheduler.instrument_coordinator.components.qblox import ClusterComponent\n", "\n", "\n", "def configure_measurement_control_loop(\n", " device: QuantumDevice, cluster: Cluster, live_plotting: bool = False\n", "):\n", " meas_ctrl = find_or_create_instrument(MeasurementControl, recreate=True, name=\"meas_ctrl\")\n", " ic = find_or_create_instrument(InstrumentCoordinator, recreate=True, name=\"ic\")\n", "\n", " # Add cluster to instrument coordinator\n", " ic_cluster = ClusterComponent(cluster)\n", " ic.add_component(ic_cluster)\n", "\n", " if live_plotting:\n", " # Associate plot monitor with measurement controller\n", " plotmon = find_or_create_instrument(PlotMonitor, recreate=False, name=\"PlotMonitor\")\n", " meas_ctrl.instr_plotmon(plotmon.name)\n", "\n", " # Associate measurement controller and instrument coordinator with the quantum device\n", " device.instr_measurement_control(meas_ctrl.name)\n", " device.instr_instrument_coordinator(ic.name)\n", "\n", " return (meas_ctrl, ic)\n", "\n", "\n", "meas_ctrl, instrument_coordinator = configure_measurement_control_loop(quantum_device, cluster)" ] }, { "cell_type": "markdown", "id": "7544ba30", "metadata": {}, "source": [ "### Set data directory\n", "This directory is where all of the experimental data as well as all of the post processing will go." ] }, { "cell_type": "code", "execution_count": 7, "id": "b79b5136", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:19.939335Z", "iopub.status.busy": "2024-09-18T14:58:19.938854Z", "iopub.status.idle": "2024-09-18T14:58:19.942658Z", "shell.execute_reply": "2024-09-18T14:58:19.942015Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Data will be saved in:\n", "/root/quantify-data\n" ] } ], "source": [ "import quantify_core.data.handling as dh\n", "\n", "# Enter your own dataset directory here!\n", "dh.set_datadir(dh.default_datadir())" ] }, { "cell_type": "markdown", "id": "2772e61c", "metadata": {}, "source": [ "### Configure external flux control\n", "We need to have some way of controlling the external flux.\n", "\n", "This can be done by setting an output bias on a module of the cluster which is then connected to the flux-control line.\n", "\n", "Here we are nullifying the external flux on both qubits." ] }, { "cell_type": "code", "execution_count": 8, "id": "4a931d76", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:19.944682Z", "iopub.status.busy": "2024-09-18T14:58:19.944511Z", "iopub.status.idle": "2024-09-18T14:58:19.948493Z", "shell.execute_reply": "2024-09-18T14:58:19.947813Z" } }, "outputs": [], "source": [ "flux_settables = {q0.name: cluster.module2.out0_offset, q1.name: cluster.module2.out1_offset}\n", "\n", "for flux_settable in flux_settables.values():\n", " flux_settable.inter_delay = 100e-9 # Delay time in seconds between consecutive set operations.\n", " flux_settable.step = 0.3e-3 # Stepsize in V that this Parameter uses during set operation.\n", " flux_settable() # Get before setting to avoid jumps.\n", " flux_settable(0.0)" ] }, { "cell_type": "code", "execution_count": 9, "id": "5ea72a21", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:19.950359Z", "iopub.status.busy": "2024-09-18T14:58:19.950167Z", "iopub.status.idle": "2024-09-18T14:58:19.953598Z", "shell.execute_reply": "2024-09-18T14:58:19.952931Z" } }, "outputs": [], "source": [ "flux_settables[q0.name](0.0) # enter your own value here for qubit 0\n", "flux_settables[q1.name](0.0) # enter your own value here for qubit 1" ] }, { "cell_type": "markdown", "id": "3e004c41", "metadata": {}, "source": [ "### Activate NCO delay compensation\n", "Compensate for the digital propagation delay for each qubit (i.e each sequencer)\n", "\n", "For more info, please see: https://qblox-qblox-instruments.readthedocs-hosted.com/en/main/api_reference/sequencer.html#Sequencer.nco_prop_delay_comp\n", "\n", "To avoid mismatches between modulation and demodulation, the delay between any readout frequency or phase changes and the next acquisition should be equal or greater than the total propagation delay (146ns + user defined value)." ] }, { "cell_type": "code", "execution_count": 10, "id": "b749800c", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:19.955565Z", "iopub.status.busy": "2024-09-18T14:58:19.955371Z", "iopub.status.idle": "2024-09-18T14:58:19.960765Z", "shell.execute_reply": "2024-09-18T14:58:19.960105Z" } }, "outputs": [], "source": [ "for i in range(6):\n", " getattr(cluster.module8, f\"sequencer{i}\").nco_prop_delay_comp_en(True)\n", " getattr(cluster.module8, f\"sequencer{i}\").nco_prop_delay_comp(10)" ] }, { "cell_type": "markdown", "id": "fe3988af", "metadata": {}, "source": [ "## Experiments\n", "\n", "As in the single qubit tuneup tutorial, the sweep setpoints for all experiments in this section are only examples. The sweep setpoints should be changed to match your own system.\n", "In this section we assume that each individual qubit has already been characterized, and that they have been biased to their sweetspots.\n", "\n", "We will examine the flux response of the 2-qubit system. By \"flux response\" we mean the measured response of the system when the parameterization of a flux pulse is varied.\n", "\n", "We consider two separate experiments which have their own separate parameterizations, they are:\n", "\n", "1. Controlled phase calibration (a.k.a. two-qubit Chevron experiment)\n", " - Used to measure coupling strength between the two qubits.\n", " - Used to find the location of the $|11\\rangle \\leftrightarrow |02\\rangle$ avoided crossing.\n", "2. Conditional oscillations\n", " - Used to measure the conditional phase of the controlled phase gate.\n", " - Used to estimate leakage to $|02\\rangle$.\n", " - Can also be used to measure single-qubit phases on the individual qubits.\n", "\n", "In both of these experiments, we apply the flux pulse on the flux-control line of `q1` (on top of the sweetspot bias) which we take to be the qubit with the *higher* frequency, i.e. $\\omega_1$ > $\\omega_0$." ] }, { "cell_type": "markdown", "id": "af8831f3", "metadata": {}, "source": [ "### Controlled phase calibration" ] }, { "cell_type": "code", "execution_count": 11, "id": "761353ee", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:19.962826Z", "iopub.status.busy": "2024-09-18T14:58:19.962590Z", "iopub.status.idle": "2024-09-18T14:58:19.969407Z", "shell.execute_reply": "2024-09-18T14:58:19.968787Z" } }, "outputs": [], "source": [ "import numpy as np\n", "from qcodes.parameters import ManualParameter\n", "\n", "from quantify_scheduler.gettables import ScheduleGettable\n", "from quantify_scheduler.operations.gate_library import Measure, Reset, X\n", "from quantify_scheduler.schedules.schedule import Schedule\n", "from quantify_scheduler.schedules.two_qubit_transmon_schedules import chevron_cz_sched\n", "\n", "duration = ManualParameter(name=\"dur\", unit=\"Hz\", label=\"Duration of flux pulse\")\n", "amplitude = ManualParameter(name=\"amp\", unit=\"\", label=\"Amplitude of flux pulse\")\n", "\n", "amplitude.batched = True\n", "duration.batched = False\n", "\n", "chevron_cz_sched_kwargs = dict(\n", " lf_qubit=q0.name, hf_qubit=q1.name, amplitudes=amplitude, duration=duration\n", ")\n", "\n", "gettable = ScheduleGettable(\n", " quantum_device,\n", " schedule_function=chevron_cz_sched,\n", " schedule_kwargs=chevron_cz_sched_kwargs,\n", " real_imag=False,\n", " data_labels=[\n", " \"Magnitude lf qubit\",\n", " \"Phase lf qubit\",\n", " \"Magnitude hf qubit\",\n", " \"Phase hf qubit\",\n", " ],\n", " batched=True,\n", " num_channels=2,\n", ")\n", "\n", "meas_ctrl.gettables(gettable)" ] }, { "cell_type": "code", "execution_count": 12, "id": "db463bd7", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:19.971307Z", "iopub.status.busy": "2024-09-18T14:58:19.971110Z", "iopub.status.idle": "2024-09-18T14:58:20.808125Z", "shell.execute_reply": "2024-09-18T14:58:20.807400Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t dur \n", "Batched settable(s):\n", "\t amp \n", "Batch size limit: 40\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1220: ValidationWarning: Setting `auto_lo_cal=on_lo_interm_freq_change` will overwrite settings `dc_offset_i=0.0` and `dc_offset_q=0.0`. To suppress this warning, do not set either `dc_offset_i` or `dc_offset_q` for this port-clock.\n", " warnings.warn(\n", "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n", "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "55cda7b64ae74b9ca2f7bf65c168ce86", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 2kB\n",
       "Dimensions:  (dim_0: 40)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 320B 4e-09 4e-09 4e-09 ... 1.6e-08 1.6e-08 1.6e-08\n",
       "    x1       (dim_0) float64 320B 0.05 0.06667 0.08333 0.1 ... 0.1667 0.1833 0.2\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 320B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y1       (dim_0) float64 320B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y2       (dim_0) float64 320B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y3       (dim_0) float64 320B nan nan nan nan nan ... nan nan nan nan nan\n",
       "Attributes:\n",
       "    tuid:                             20240918-145819-974-354673\n",
       "    name:                             chevron\n",
       "    grid_2d:                          True\n",
       "    grid_2d_uniformly_spaced:         True\n",
       "    1d_2_settables_uniformly_spaced:  False\n",
       "    xlen:                             4\n",
       "    ylen:                             10
" ], "text/plain": [ " Size: 2kB\n", "Dimensions: (dim_0: 40)\n", "Coordinates:\n", " x0 (dim_0) float64 320B 4e-09 4e-09 4e-09 ... 1.6e-08 1.6e-08 1.6e-08\n", " x1 (dim_0) float64 320B 0.05 0.06667 0.08333 0.1 ... 0.1667 0.1833 0.2\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 320B nan nan nan nan nan ... nan nan nan nan nan\n", " y1 (dim_0) float64 320B nan nan nan nan nan ... nan nan nan nan nan\n", " y2 (dim_0) float64 320B nan nan nan nan nan ... nan nan nan nan nan\n", " y3 (dim_0) float64 320B nan nan nan nan nan ... nan nan nan nan nan\n", "Attributes:\n", " tuid: 20240918-145819-974-354673\n", " name: chevron\n", " grid_2d: True\n", " grid_2d_uniformly_spaced: True\n", " 1d_2_settables_uniformly_spaced: False\n", " xlen: 4\n", " ylen: 10" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.cfg_sched_repetitions(400)\n", "\n", "duration_setpoints = np.arange(4e-9, 20e-9, 4e-9)\n", "amplitude_setpoints = np.linspace(0.05, 0.2, 10)\n", "\n", "meas_ctrl.settables([duration, amplitude])\n", "meas_ctrl.setpoints_grid((duration_setpoints, amplitude_setpoints))\n", "\n", "chevron_ds = meas_ctrl.run(\"chevron\")\n", "chevron_ds" ] }, { "cell_type": "markdown", "id": "2fe4678a", "metadata": {}, "source": [ "[![image1](figures/chevron.png)](figures/chevron.png)" ] }, { "cell_type": "markdown", "id": "d13d0c17", "metadata": {}, "source": [ "### Conditional oscillations" ] }, { "cell_type": "code", "execution_count": 13, "id": "2e429d91", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:20.810340Z", "iopub.status.busy": "2024-09-18T14:58:20.810149Z", "iopub.status.idle": "2024-09-18T14:58:20.818714Z", "shell.execute_reply": "2024-09-18T14:58:20.818072Z" } }, "outputs": [], "source": [ "from typing import Literal\n", "\n", "from numpy.typing import NDArray\n", "\n", "from quantify_scheduler.operations.gate_library import X90, Rxy\n", "from quantify_scheduler.operations.pulse_library import SuddenNetZeroPulse\n", "\n", "\n", "def conditional_oscillation_sched(\n", " target_qubit: str,\n", " control_qubit: str,\n", " phases: NDArray,\n", " variant: Literal[\"OFF\", \"ON\"],\n", " snz_A: float,\n", " snz_B: float,\n", " snz_scale: float,\n", " snz_dur: float,\n", " snz_t_phi: float,\n", " snz_t_integral_correction: float,\n", " flux_port: str = None,\n", " repetitions: int = 1,\n", ") -> Schedule:\n", " \"\"\"\n", " Make a conditional oscillation schedule to measure conditional phase.\n", "\n", " Parameters\n", " ----------\n", " target_qubit\n", " The name of a qubit, e.g., \"q0\", the qubit with lower frequency.\n", " control_qubit\n", " The name of coupled qubit, the qubit with the higher frequency.\n", " phases\n", " An array (or scalar) of recovery phases in degrees.\n", " variant\n", " A string specifying whether to excite the control qubit.\n", " snz_A\n", " Unitless amplitude of the main square pulse.\n", " snz_B\n", " Unitless scaling correction for the final sample of the first\n", " square and first sample of the second square pulse.\n", " snz_scale\n", " Amplitude scaling correction factor of the negative arm of the net-zero pulse.\n", " snz_dur\n", " The total duration of the two half square pulses.\n", " snz_t_phi\n", " The idling duration between the two half pulses.\n", " snz_t_integral_correction\n", " The duration in which any non-zero pulse amplitude needs to be corrected.\n", " flux_port\n", " An optional string for a flux port. Default is hf_qubit flux port.\n", " repetitions\n", " The amount of times the Schedule will be repeated.\n", "\n", " Returns\n", " -------\n", " :\n", " An experiment schedule.\n", "\n", " \"\"\"\n", " sched = Schedule(f\"ConditionalOscillation({variant})\", repetitions)\n", "\n", " # Ensure phases is an iterable when passing a float\n", " phases = np.asarray(phases)\n", " phases = phases.reshape(phases.shape or (1,))\n", "\n", " # Ensure that variant is uppercase for switch\n", " variant = str.upper(variant)\n", " if variant not in {\"OFF\", \"ON\"}:\n", " raise ValueError(\"Schedule variant should be 'OFF' or 'ON'.\")\n", "\n", " # Set flux port\n", " flux_port = flux_port if flux_port is not None else f\"{control_qubit}:fl\"\n", "\n", " for acq_index, phi in enumerate(phases):\n", " # Reset to |00>\n", " sched.add(Reset(target_qubit, control_qubit))\n", "\n", " # Apply a pi/2 pulse on the target qubit\n", " targ_eq_ref = sched.add(X90(target_qubit))\n", "\n", " if variant == \"ON\":\n", " # Also apply a pi pulse on the control qubit\n", " sched.add(X(control_qubit), ref_op=targ_eq_ref, ref_pt=\"start\")\n", "\n", " # Go to |11> <=> |02> avoided crossing on positive & negative sides\n", " # using the SuddenNetZeroPulse\n", " sched.add(\n", " SuddenNetZeroPulse(\n", " amp_A=snz_A,\n", " amp_B=snz_B,\n", " net_zero_A_scale=snz_scale,\n", " t_pulse=snz_dur,\n", " t_phi=snz_t_phi,\n", " t_integral_correction=snz_t_integral_correction,\n", " port=flux_port,\n", " clock=\"cl0.baseband\",\n", " )\n", " )\n", "\n", " # Apply a pi/2 recovery pulse on the target qubit\n", " targ_rec_ref = sched.add(Rxy(theta=90.0, phi=phi, qubit=target_qubit))\n", "\n", " if variant == \"ON\":\n", " # Also apply a pi pulse on the control qubit\n", " sched.add(X(control_qubit), ref_op=targ_rec_ref, ref_pt=\"start\")\n", "\n", " # Measure system\n", " sched.add(Measure(target_qubit, control_qubit, acq_index=acq_index))\n", "\n", " return sched" ] }, { "cell_type": "code", "execution_count": 14, "id": "1ad6ab1c", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:20.820430Z", "iopub.status.busy": "2024-09-18T14:58:20.820264Z", "iopub.status.idle": "2024-09-18T14:58:20.826357Z", "shell.execute_reply": "2024-09-18T14:58:20.825680Z" } }, "outputs": [], "source": [ "phase = ManualParameter(name=\"ph\", unit=\"deg\", label=\"Recovery phase\")\n", "flux_pulse_amplitude = ManualParameter(name=\"A\", unit=\"\", label=\"Flux pulse amplitude\")\n", "scaling_correction = ManualParameter(name=\"B\", unit=\"\", label=\"Scaling correction\")\n", "\n", "phase.batched = True\n", "flux_pulse_amplitude.batched = False\n", "scaling_correction.batched = False\n", "\n", "conditional_oscillation_sched_kwargs = dict(\n", " target_qubit=q0.name,\n", " control_qubit=q1.name,\n", " phases=phase,\n", " snz_A=flux_pulse_amplitude,\n", " snz_B=scaling_correction,\n", " snz_scale=1.0,\n", " snz_dur=40e-9,\n", " snz_t_phi=4e-9,\n", " snz_t_integral_correction=0.0,\n", ")\n", "\n", "gettable_off = ScheduleGettable(\n", " quantum_device,\n", " conditional_oscillation_sched,\n", " schedule_kwargs={**conditional_oscillation_sched_kwargs, **{\"variant\": \"OFF\"}},\n", " real_imag=False,\n", " batched=True,\n", " num_channels=2,\n", ")\n", "gettable_on = ScheduleGettable(\n", " quantum_device,\n", " conditional_oscillation_sched,\n", " schedule_kwargs={**conditional_oscillation_sched_kwargs, **{\"variant\": \"ON\"}},\n", " real_imag=False,\n", " batched=True,\n", " num_channels=2,\n", ")\n", "\n", "meas_ctrl.gettables((gettable_off, gettable_on))" ] }, { "cell_type": "code", "execution_count": 15, "id": "6832e599", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:20.828081Z", "iopub.status.busy": "2024-09-18T14:58:20.827915Z", "iopub.status.idle": "2024-09-18T14:58:21.779123Z", "shell.execute_reply": "2024-09-18T14:58:21.778332Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Starting batched measurement...\n", "Iterative settable(s) [outer loop(s)]:\n", "\t A, B \n", "Batched settable(s):\n", "\t ph \n", "Batch size limit: 60\n", "\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/waveforms.py:326: RuntimeWarning: divide by zero encountered in scalar divide\n", " integral_value = -sum(waveform) / num_corr_samples\n", "/usr/local/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.\n", " warnings.warn(\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/local/lib/python3.9/site-packages/quantify_scheduler/waveforms.py:326: RuntimeWarning: divide by zero encountered in scalar divide\n", " integral_value = -sum(waveform) / num_corr_samples\n" ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cb577e67e29d4fd3aa633361034eb504", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Completed: 0%| [ elapsed time: 00:00 | time left: ? ] it" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
<xarray.Dataset> Size: 5kB\n",
       "Dimensions:  (dim_0: 60)\n",
       "Coordinates:\n",
       "    x0       (dim_0) float64 480B 0.0 6.102 12.2 18.31 ... 347.8 353.9 360.0\n",
       "    x1       (dim_0) float64 480B 0.8 0.8 0.8 0.8 0.8 ... 0.8 0.8 0.8 0.8 0.8\n",
       "    x2       (dim_0) float64 480B 0.5 0.5 0.5 0.5 0.5 ... 0.5 0.5 0.5 0.5 0.5\n",
       "Dimensions without coordinates: dim_0\n",
       "Data variables:\n",
       "    y0       (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y1       (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y2       (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y3       (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y4       (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y5       (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y6       (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n",
       "    y7       (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n",
       "Attributes:\n",
       "    tuid:                             20240918-145820-831-5fbd20\n",
       "    name:                             conditional oscillation\n",
       "    grid_2d:                          False\n",
       "    grid_2d_uniformly_spaced:         False\n",
       "    1d_2_settables_uniformly_spaced:  False
" ], "text/plain": [ " Size: 5kB\n", "Dimensions: (dim_0: 60)\n", "Coordinates:\n", " x0 (dim_0) float64 480B 0.0 6.102 12.2 18.31 ... 347.8 353.9 360.0\n", " x1 (dim_0) float64 480B 0.8 0.8 0.8 0.8 0.8 ... 0.8 0.8 0.8 0.8 0.8\n", " x2 (dim_0) float64 480B 0.5 0.5 0.5 0.5 0.5 ... 0.5 0.5 0.5 0.5 0.5\n", "Dimensions without coordinates: dim_0\n", "Data variables:\n", " y0 (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n", " y1 (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n", " y2 (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n", " y3 (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n", " y4 (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n", " y5 (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n", " y6 (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n", " y7 (dim_0) float64 480B nan nan nan nan nan ... nan nan nan nan nan\n", "Attributes:\n", " tuid: 20240918-145820-831-5fbd20\n", " name: conditional oscillation\n", " grid_2d: False\n", " grid_2d_uniformly_spaced: False\n", " 1d_2_settables_uniformly_spaced: False" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "quantum_device.cfg_sched_repetitions(400)\n", "\n", "meas_ctrl.settables([phase, flux_pulse_amplitude, scaling_correction])\n", "meas_ctrl.setpoints_grid((np.linspace(0.0, 360.0, 60), [0.8], [0.5]))\n", "\n", "cond_osc_ds = meas_ctrl.run(\"conditional oscillation\")\n", "cond_osc_ds" ] }, { "cell_type": "markdown", "id": "eb2232aa", "metadata": {}, "source": [ "[![image2](figures/cond_osc.png)](figures/cond_osc.png)" ] }, { "cell_type": "code", "execution_count": 16, "id": "572a6332", "metadata": { "execution": { "iopub.execute_input": "2024-09-18T14:58:21.781263Z", "iopub.status.busy": "2024-09-18T14:58:21.781072Z", "iopub.status.idle": "2024-09-18T14:58:21.818071Z", "shell.execute_reply": "2024-09-18T14:58:21.817461Z" } }, "outputs": [ { "data": { "text/html": [ "
{\n",
       "    'config_type': 'quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig',\n",
       "    'hardware_description': {\n",
       "        'cluster0': {\n",
       "            'instrument_type': 'Cluster',\n",
       "            'modules': {\n",
       "                '6': {'instrument_type': 'QCM_RF'},\n",
       "                '2': {'instrument_type': 'QCM'},\n",
       "                '8': {'instrument_type': 'QRM_RF'}\n",
       "            },\n",
       "            'sequence_to_file': False,\n",
       "            'ref': 'internal'\n",
       "        }\n",
       "    },\n",
       "    'hardware_options': {\n",
       "        'output_att': {'q0:mw-q0.01': 10, 'q1:mw-q1.01': 10, 'q0:res-q0.ro': 60, 'q1:res-q1.ro': 60},\n",
       "        'mixer_corrections': {\n",
       "            'q0:mw-q0.01': {\n",
       "                'auto_lo_cal': 'on_lo_interm_freq_change',\n",
       "                'auto_sideband_cal': 'on_interm_freq_change',\n",
       "                'dc_offset_i': None,\n",
       "                'dc_offset_q': None,\n",
       "                'amp_ratio': 1.0,\n",
       "                'phase_error': 0.0\n",
       "            },\n",
       "            'q1:mw-q1.01': {\n",
       "                'auto_lo_cal': 'on_lo_interm_freq_change',\n",
       "                'auto_sideband_cal': 'on_interm_freq_change',\n",
       "                'dc_offset_i': None,\n",
       "                'dc_offset_q': None,\n",
       "                'amp_ratio': 1.0,\n",
       "                'phase_error': 0.0\n",
       "            },\n",
       "            'q0:res-q0.ro': {\n",
       "                'auto_lo_cal': 'on_lo_interm_freq_change',\n",
       "                'auto_sideband_cal': 'on_interm_freq_change',\n",
       "                'dc_offset_i': None,\n",
       "                'dc_offset_q': None,\n",
       "                'amp_ratio': 1.0,\n",
       "                'phase_error': 0.0\n",
       "            },\n",
       "            'q1:res-q1.ro': {\n",
       "                'auto_lo_cal': 'on_lo_interm_freq_change',\n",
       "                'auto_sideband_cal': 'on_interm_freq_change',\n",
       "                'dc_offset_i': None,\n",
       "                'dc_offset_q': None,\n",
       "                'amp_ratio': 1.0,\n",
       "                'phase_error': 0.0\n",
       "            }\n",
       "        },\n",
       "        'modulation_frequencies': {\n",
       "            'q0:mw-q0.01': {'interm_freq': 80000000.0},\n",
       "            'q1:mw-q1.01': {'interm_freq': 80000000.0},\n",
       "            'q0:res-q0.ro': {'lo_freq': 7500000000.0},\n",
       "            'q1:res-q1.ro': {'lo_freq': 7500000000.0}\n",
       "        }\n",
       "    },\n",
       "    'connectivity': {\n",
       "        'graph': [\n",
       "            ['cluster0.module6.complex_output_0', 'q0:mw'],\n",
       "            ['cluster0.module6.complex_output_1', 'q1:mw'],\n",
       "            ['cluster0.module2.real_output_0', 'q0:fl'],\n",
       "            ['cluster0.module2.real_output_1', 'q1:fl'],\n",
       "            ['cluster0.module8.complex_output_0', 'q0:res'],\n",
       "            ['cluster0.module8.complex_output_0', 'q1:res']\n",
       "        ]\n",
       "    }\n",
       "}\n",
       "
\n" ], "text/plain": [ "\u001b[1m{\u001b[0m\n", " \u001b[32m'config_type'\u001b[0m: \u001b[32m'quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig'\u001b[0m,\n", " \u001b[32m'hardware_description'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'cluster0'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'instrument_type'\u001b[0m: \u001b[32m'Cluster'\u001b[0m,\n", " \u001b[32m'modules'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'6'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'instrument_type'\u001b[0m: \u001b[32m'QCM_RF'\u001b[0m\u001b[1m}\u001b[0m,\n", " \u001b[32m'2'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'instrument_type'\u001b[0m: \u001b[32m'QCM'\u001b[0m\u001b[1m}\u001b[0m,\n", " \u001b[32m'8'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'instrument_type'\u001b[0m: \u001b[32m'QRM_RF'\u001b[0m\u001b[1m}\u001b[0m\n", " \u001b[1m}\u001b[0m,\n", " \u001b[32m'sequence_to_file'\u001b[0m: \u001b[3;91mFalse\u001b[0m,\n", " \u001b[32m'ref'\u001b[0m: \u001b[32m'internal'\u001b[0m\n", " \u001b[1m}\u001b[0m\n", " \u001b[1m}\u001b[0m,\n", " \u001b[32m'hardware_options'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'output_att'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'q0:mw-q0.01'\u001b[0m: \u001b[1;36m10\u001b[0m, \u001b[32m'q1:mw-q1.01'\u001b[0m: \u001b[1;36m10\u001b[0m, \u001b[32m'q0:res-q0.ro'\u001b[0m: \u001b[1;36m60\u001b[0m, \u001b[32m'q1:res-q1.ro'\u001b[0m: \u001b[1;36m60\u001b[0m\u001b[1m}\u001b[0m,\n", " \u001b[32m'mixer_corrections'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'q0:mw-q0.01'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'auto_lo_cal'\u001b[0m: \u001b[32m'on_lo_interm_freq_change'\u001b[0m,\n", " \u001b[32m'auto_sideband_cal'\u001b[0m: \u001b[32m'on_interm_freq_change'\u001b[0m,\n", " \u001b[32m'dc_offset_i'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'dc_offset_q'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'amp_ratio'\u001b[0m: \u001b[1;36m1.0\u001b[0m,\n", " \u001b[32m'phase_error'\u001b[0m: \u001b[1;36m0.0\u001b[0m\n", " \u001b[1m}\u001b[0m,\n", " \u001b[32m'q1:mw-q1.01'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'auto_lo_cal'\u001b[0m: \u001b[32m'on_lo_interm_freq_change'\u001b[0m,\n", " \u001b[32m'auto_sideband_cal'\u001b[0m: \u001b[32m'on_interm_freq_change'\u001b[0m,\n", " \u001b[32m'dc_offset_i'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'dc_offset_q'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'amp_ratio'\u001b[0m: \u001b[1;36m1.0\u001b[0m,\n", " \u001b[32m'phase_error'\u001b[0m: \u001b[1;36m0.0\u001b[0m\n", " \u001b[1m}\u001b[0m,\n", " \u001b[32m'q0:res-q0.ro'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'auto_lo_cal'\u001b[0m: \u001b[32m'on_lo_interm_freq_change'\u001b[0m,\n", " \u001b[32m'auto_sideband_cal'\u001b[0m: \u001b[32m'on_interm_freq_change'\u001b[0m,\n", " \u001b[32m'dc_offset_i'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'dc_offset_q'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'amp_ratio'\u001b[0m: \u001b[1;36m1.0\u001b[0m,\n", " \u001b[32m'phase_error'\u001b[0m: \u001b[1;36m0.0\u001b[0m\n", " \u001b[1m}\u001b[0m,\n", " \u001b[32m'q1:res-q1.ro'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'auto_lo_cal'\u001b[0m: \u001b[32m'on_lo_interm_freq_change'\u001b[0m,\n", " \u001b[32m'auto_sideband_cal'\u001b[0m: \u001b[32m'on_interm_freq_change'\u001b[0m,\n", " \u001b[32m'dc_offset_i'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'dc_offset_q'\u001b[0m: \u001b[3;35mNone\u001b[0m,\n", " \u001b[32m'amp_ratio'\u001b[0m: \u001b[1;36m1.0\u001b[0m,\n", " \u001b[32m'phase_error'\u001b[0m: \u001b[1;36m0.0\u001b[0m\n", " \u001b[1m}\u001b[0m\n", " \u001b[1m}\u001b[0m,\n", " \u001b[32m'modulation_frequencies'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'q0:mw-q0.01'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'interm_freq'\u001b[0m: \u001b[1;36m80000000.0\u001b[0m\u001b[1m}\u001b[0m,\n", " \u001b[32m'q1:mw-q1.01'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'interm_freq'\u001b[0m: \u001b[1;36m80000000.0\u001b[0m\u001b[1m}\u001b[0m,\n", " \u001b[32m'q0:res-q0.ro'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'lo_freq'\u001b[0m: \u001b[1;36m7500000000.0\u001b[0m\u001b[1m}\u001b[0m,\n", " \u001b[32m'q1:res-q1.ro'\u001b[0m: \u001b[1m{\u001b[0m\u001b[32m'lo_freq'\u001b[0m: \u001b[1;36m7500000000.0\u001b[0m\u001b[1m}\u001b[0m\n", " \u001b[1m}\u001b[0m\n", " \u001b[1m}\u001b[0m,\n", " \u001b[32m'connectivity'\u001b[0m: \u001b[1m{\u001b[0m\n", " \u001b[32m'graph'\u001b[0m: \u001b[1m[\u001b[0m\n", " \u001b[1m[\u001b[0m\u001b[32m'cluster0.module6.complex_output_0'\u001b[0m, \u001b[32m'q0:mw'\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[1m[\u001b[0m\u001b[32m'cluster0.module6.complex_output_1'\u001b[0m, \u001b[32m'q1:mw'\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[1m[\u001b[0m\u001b[32m'cluster0.module2.real_output_0'\u001b[0m, \u001b[32m'q0:fl'\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[1m[\u001b[0m\u001b[32m'cluster0.module2.real_output_1'\u001b[0m, \u001b[32m'q1:fl'\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[1m[\u001b[0m\u001b[32m'cluster0.module8.complex_output_0'\u001b[0m, \u001b[32m'q0:res'\u001b[0m\u001b[1m]\u001b[0m,\n", " \u001b[1m[\u001b[0m\u001b[32m'cluster0.module8.complex_output_0'\u001b[0m, \u001b[32m'q1:res'\u001b[0m\u001b[1m]\u001b[0m\n", " \u001b[1m]\u001b[0m\n", " \u001b[1m}\u001b[0m\n", "\u001b[1m}\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "\n", "rich.print(quantum_device.hardware_config())" ] } ], "metadata": { "files_to_bundle_in_zip_file": [ "figures/chevron.png", "figures/cond_osc.png", "configs/tuning_transmon_coupled_pair_hardware_config.json", "devices/transmon_device_2q.json" ], "jupytext": { "main_language": "python", "notebook_metadata_filter": "files_to_bundle_in_zip_file" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.20" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "00ffbd1185074fb0807f16821cfbd98e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "065880b4e6d04f0fac2a0bc959d5043c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_54be75293fd64a25880b74b896ca224e", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_6f92d885bc834f47a8a84d629cc6ad38", "tabbable": null, "tooltip": null, "value": 100.0 } }, "21ba03966d8c4a6182f0c5c9f949b8e4": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b5010903da9448a8b626aa330f503bff", "placeholder": "​", "style": "IPY_MODEL_6c0ba908ca41481e823baf65e6759f88", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "54be75293fd64a25880b74b896ca224e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "55cda7b64ae74b9ca2f7bf65c168ce86": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_b073c38ad2b1489dac6e5b7ee794ec0d", "IPY_MODEL_065880b4e6d04f0fac2a0bc959d5043c", "IPY_MODEL_891e2b8cd2834707a6e0e2e8a7f7a518" ], "layout": "IPY_MODEL_832eaecd7d9442bdbd46d44aca9d63f9", "tabbable": null, "tooltip": null } }, "6128b013570647cf8ea6ba46b127469c": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "62b444d1e85e4c91b3686a04dceb4f2e": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "65a85faba835455886a4345ac8bd4fa5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "6c0ba908ca41481e823baf65e6759f88": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "6f92d885bc834f47a8a84d629cc6ad38": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "7249b1e73b3041ab98032ef88459d13d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_760f7c23c0694d7b8471dedc56d2c311", "placeholder": "​", "style": "IPY_MODEL_bd48a4932d6e4abe8576fa8be11c2092", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 60" } }, "760f7c23c0694d7b8471dedc56d2c311": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7d356c565a2543ffbadb679281679b43": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "832eaecd7d9442bdbd46d44aca9d63f9": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "891e2b8cd2834707a6e0e2e8a7f7a518": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_62b444d1e85e4c91b3686a04dceb4f2e", "placeholder": "​", "style": "IPY_MODEL_6128b013570647cf8ea6ba46b127469c", "tabbable": null, "tooltip": null, "value": " [ elapsed time: 00:00 | time left: 00:00 ]  last batch size: 10" } }, "9569ac7f3e97463db3fa86adcf93a4d3": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a9b105677812415ba97d83f3fe941bec": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "b073c38ad2b1489dac6e5b7ee794ec0d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7d356c565a2543ffbadb679281679b43", "placeholder": "​", "style": "IPY_MODEL_a9b105677812415ba97d83f3fe941bec", "tabbable": null, "tooltip": null, "value": "Completed: 100%" } }, "b5010903da9448a8b626aa330f503bff": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bd48a4932d6e4abe8576fa8be11c2092": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "cb577e67e29d4fd3aa633361034eb504": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_21ba03966d8c4a6182f0c5c9f949b8e4", "IPY_MODEL_eec7f66224cc4eaa8a39e477aaf2151e", "IPY_MODEL_7249b1e73b3041ab98032ef88459d13d" ], "layout": "IPY_MODEL_00ffbd1185074fb0807f16821cfbd98e", "tabbable": null, "tooltip": null } }, "eec7f66224cc4eaa8a39e477aaf2151e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_9569ac7f3e97463db3fa86adcf93a4d3", "max": 100.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_65a85faba835455886a4345ac8bd4fa5", "tabbable": null, "tooltip": null, "value": 100.0 } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 5 }