See also
A Jupyter notebook version of this tutorial can be downloaded here
.
Discriminated Single Shot Readout#
The notebook will show how to run a readout calibration experiment and fit a discriminator with a linear discriminant analysis. This experiment is sometimes called multi-state discrimination.
[1]:
from __future__ import annotations
import json
from functools import partial
from typing import Literal
import matplotlib.pyplot as plt
import numpy as np
import rich # noqa:F401
from qcodes.instrument import find_or_create_instrument
from qcodes.parameters import ManualParameter
from sklearn.metrics import ConfusionMatrixDisplay
import quantify_core.data.handling as dh
from qblox_instruments import Cluster, ClusterType
from quantify_core.analysis.readout_calibration_analysis import ReadoutCalibrationAnalysis
from quantify_core.measurement.control import MeasurementControl
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt as PlotMonitor
from quantify_scheduler import Schedule
from quantify_scheduler.device_under_test.quantum_device import QuantumDevice
from quantify_scheduler.enums import BinMode
from quantify_scheduler.gettables import ScheduleGettable
from quantify_scheduler.instrument_coordinator import InstrumentCoordinator
from quantify_scheduler.instrument_coordinator.components.qblox import (
ClusterComponent,
)
from quantify_scheduler.operations.gate_library import Measure, Reset, Rxy
Setup#
In this section we configure the hardware configuration which specifies the connectivity of our system.
The experiments of this tutorial are meant to be executed with a Qblox Cluster controlling a transmon system. The experiments can also be executed using a dummy Qblox device that is created via an instance of the Cluster
class, and is initialized with a dummy configuration. When using a dummy device, the analysis will not work because the experiments will return np.nan
values.
Configuration file#
This is a template hardware configuration file for a 2-qubit system with a flux-control line which can be used to tune the qubit frequency. We will only work with qubit 0.
The hardware setup is as follows, by cluster slot: - QCM (Slot 2) - Flux line for q0
. - QCM-RF (Slot 6) - Drive line for q0
using fixed 80 MHz IF. - QRM-RF (Slot 8) - Readout line for q0
using a fixed LO set at 7.5 GHz.
Note that in the hardware configuration below the mixers are uncorrected, but for high fidelity experiments this should also be done for all the modules.
[2]:
with open("configs/tuning_transmon_coupled_pair_hardware_config.json") as hw_cfg_json_file:
hardware_cfg = json.load(hw_cfg_json_file)
# Enter your own dataset directory here!
dh.set_datadir(dh.default_datadir())
Data will be saved in:
/root/quantify-data
Scan For Clusters#
We scan for the available devices connected via ethernet using the Plug & Play functionality of the Qblox Instruments package (see Plug & Play for more info).
[3]:
!qblox-pnp list
No devices found
[4]:
cluster_ip = None # To run this tutorial on hardware, fill in the IP address of the cluster here
cluster_name = "cluster0"
Connect to Cluster#
We now make a connection with the Cluster.
[5]:
cluster = find_or_create_instrument(
Cluster,
recreate=True,
name=cluster_name,
identifier=cluster_ip,
dummy_cfg=(
{
2: ClusterType.CLUSTER_QCM,
4: ClusterType.CLUSTER_QRM,
6: ClusterType.CLUSTER_QCM_RF,
8: ClusterType.CLUSTER_QRM_RF,
}
if cluster_ip is None
else None
),
)
Quantum device settings#
Here we initialize our QuantumDevice
and our qubit parameters, checkout this tutorial for further details.
In short, a QuantumDevice
contains device elements where we save our found parameters. Here we are loading a template for 2 qubits, but we will only use qubit 0.
[6]:
quantum_device = QuantumDevice.from_json_file("devices/transmon_device_2q.json")
qubit = quantum_device.get_element("q0")
quantum_device.hardware_config(hardware_cfg)
Configure measurement control loop#
We will use a MeasurementControl
object for data acquisition as well as an InstrumentCoordinator
for controlling the instruments in our setup.
The PlotMonitor
is used for live plotting.
All of these are then associated with the QuantumDevice
.
[7]:
def configure_measurement_control_loop(
device: QuantumDevice, cluster: Cluster, live_plotting: bool = False
) -> tuple[MeasurementControl, InstrumentCoordinator]:
meas_ctrl = find_or_create_instrument(MeasurementControl, recreate=True, name="meas_ctrl")
ic = find_or_create_instrument(InstrumentCoordinator, recreate=True, name="ic")
# Add cluster to instrument coordinator
ic_cluster = ClusterComponent(cluster)
ic.add_component(ic_cluster)
if live_plotting:
# Associate plot monitor with measurement controller
plotmon = find_or_create_instrument(PlotMonitor, recreate=False, name="PlotMonitor")
meas_ctrl.instr_plotmon(plotmon.name)
# Associate measurement controller and instrument coordinator with the quantum device
device.instr_measurement_control(meas_ctrl.name)
device.instr_instrument_coordinator(ic.name)
return (meas_ctrl, ic)
meas_ctrl, instrument_coordinator = configure_measurement_control_loop(quantum_device, cluster)
Schedule definition#
[8]:
def readout_calibration_sched(
qubit: str,
prepared_states: list[int],
repetitions: int = 1,
acq_protocol: Literal[
"SSBIntegrationComplex", "ThresholdedAcquisition"
] = "SSBIntegrationComplex",
) -> Schedule:
"""
Make a schedule for readout calibration.
Parameters
----------
qubit
The name of the qubit e.g., :code:`"q0"` to perform the experiment on.
prepared_states
A list of integers indicating which state to prepare the qubit in before measuring.
The ground state corresponds to 0 and the first-excited state to 1.
repetitions
The number of times the schedule will be repeated. Fixed to 1 for this schedule.
acq_protocol
The acquisition protocol used for the readout calibration. By default
"SSBIntegrationComplex", but "ThresholdedAcquisition" can be
used for verifying thresholded acquisition parameters.
Returns
-------
:
An experiment schedule.
Raises
------
NotImplementedError
If the prepared state is > 1.
"""
schedule = Schedule(f"Readout calibration {qubit}", repetitions=1)
for i, prep_state in enumerate(prepared_states):
schedule.add(Reset(qubit), label=f"Reset {i}")
if prep_state == 0:
pass
elif prep_state == 1:
schedule.add(Rxy(qubit=qubit, theta=180, phi=0))
else:
raise NotImplementedError(
"Preparing the qubit in the higher excited states is not supported yet."
)
schedule.add(
Measure(qubit, acq_index=i, bin_mode=BinMode.APPEND, acq_protocol=acq_protocol),
label=f"Measurement {i}",
)
return schedule
SSRO with single side band (SSB) integration#
[9]:
states = ManualParameter(name="states", unit="", label="Prepared state")
states.batch_size = 400
states.batched = True
readout_calibration_sched_kwargs = dict(
qubit=qubit.name, prepared_states=states, acq_protocol="SSBIntegrationComplex"
)
# set gettable
ssro_gettable = ScheduleGettable(
quantum_device,
schedule_function=readout_calibration_sched,
schedule_kwargs=readout_calibration_sched_kwargs,
real_imag=True,
batched=True,
)
# set measurement control
meas_ctrl.gettables(ssro_gettable)
[10]:
num_shots = 1000
state_setpoints = np.asarray([0, 1] * num_shots)
# replace the get method for the gettable in case the cluster is a dummy
if "dummy" in str(cluster._transport):
from fake_data import get_fake_ssro_data
ssro_gettable.get = partial(get_fake_ssro_data, num_shots=num_shots)
meas_ctrl.settables(states)
meas_ctrl.setpoints(state_setpoints)
ssro_ds = dh.to_gridded_dataset(meas_ctrl.run("Single shot readout experiment"))
ssro_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
--- (None) ---
Batched settable(s):
states
Batch size limit: 400
[10]:
<xarray.Dataset> Size: 48kB Dimensions: (x0: 2000) Coordinates: * x0 (x0) int64 16kB 0 1 0 1 0 1 0 1 0 1 0 1 ... 0 1 0 1 0 1 0 1 0 1 0 1 Data variables: y0 (x0) float64 16kB 0.01287 0.04625 0.003522 ... 0.005078 0.04701 y1 (x0) float64 16kB -0.006942 0.03207 0.03059 ... 0.01525 0.02353 Attributes: tuid: 20240918-145836-991-deced7 name: Single shot readout experiment grid_2d: False grid_2d_uniformly_spaced: False 1d_2_settables_uniformly_spaced: False
Fit line discriminator with linear discriminant analysis (LDA)#
[11]:
ssro_analysis = ReadoutCalibrationAnalysis(tuid=dh.get_latest_tuid())
ssro_analysis.run().display_figs_mpl()
[12]:
fit_results = ssro_analysis.fit_results["linear_discriminator"].params
acq_threshold = fit_results["acq_threshold"].value
acq_rotation = (np.rad2deg(fit_results["acq_rotation_rad"].value)) % 360
qubit.measure.acq_threshold(acq_threshold)
qubit.measure.acq_rotation(acq_rotation)
SSRO with thresholded acquisition#
[13]:
disc_ssro_gettable_kwargs = dict(
qubit=qubit.name, prepared_states=states, acq_protocol="ThresholdedAcquisition"
)
# set gettable
disc_ssro_gettable = ScheduleGettable(
quantum_device,
schedule_function=readout_calibration_sched,
schedule_kwargs=disc_ssro_gettable_kwargs,
real_imag=True,
batched=True,
)
# set measurement control
meas_ctrl.gettables(disc_ssro_gettable)
[14]:
num_shots = 10_000
state_setpoints = np.asarray([0, 1] * num_shots)
# replace the get method for the gettable in case the cluster is a dummy
if "dummy" in str(cluster._transport):
from fake_data import get_fake_binary_ssro_data
disc_ssro_gettable.get = partial(get_fake_binary_ssro_data, num_shots=num_shots)
meas_ctrl.settables(states)
meas_ctrl.setpoints(state_setpoints)
disc_ssro_ds = dh.to_gridded_dataset(meas_ctrl.run("Discriminated single shot readout experiment"))
disc_ssro_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
--- (None) ---
Batched settable(s):
states
Batch size limit: 400
[14]:
<xarray.Dataset> Size: 480kB Dimensions: (x0: 20000) Coordinates: * x0 (x0) int64 160kB 0 1 0 1 0 1 0 1 0 1 0 1 ... 1 0 1 0 1 0 1 0 1 0 1 Data variables: y0 (x0) float64 160kB 0.0 1.0 0.0 1.0 0.0 1.0 ... 1.0 0.0 1.0 0.0 1.0 y1 (x0) float64 160kB nan nan nan nan nan nan ... nan nan nan nan nan Attributes: tuid: 20240918-145838-517-849223 name: Discriminated single shot readout exper... grid_2d: False grid_2d_uniformly_spaced: False 1d_2_settables_uniformly_spaced: False
[15]:
ConfusionMatrixDisplay.from_predictions(disc_ssro_ds.x0.data, disc_ssro_ds.y0.data)
plt.title("Confusion Matrix")
plt.xlabel("Measured State")
plt.ylabel("Prepared State")
[15]:
Text(0, 0.5, 'Prepared State')
[16]:
rich.print(quantum_device.hardware_config())
{ 'config_type': 'quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig', 'hardware_description': { 'cluster0': { 'instrument_type': 'Cluster', 'modules': { '6': {'instrument_type': 'QCM_RF'}, '2': {'instrument_type': 'QCM'}, '8': {'instrument_type': 'QRM_RF'} }, 'sequence_to_file': False, 'ref': 'internal' } }, 'hardware_options': { 'output_att': {'q0:mw-q0.01': 10, 'q1:mw-q1.01': 10, 'q0:res-q0.ro': 60, 'q1:res-q1.ro': 60}, 'mixer_corrections': { 'q0:mw-q0.01': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change', 'dc_offset_i': 0.0, 'dc_offset_q': 0.0, 'amp_ratio': 1.0, 'phase_error': 0.0 }, 'q1:mw-q1.01': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change', 'dc_offset_i': 0.0, 'dc_offset_q': 0.0, 'amp_ratio': 1.0, 'phase_error': 0.0 }, 'q0:res-q0.ro': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change', 'dc_offset_i': 0.0, 'dc_offset_q': 0.0, 'amp_ratio': 1.0, 'phase_error': 0.0 }, 'q1:res-q1.ro': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change', 'dc_offset_i': 0.0, 'dc_offset_q': 0.0, 'amp_ratio': 1.0, 'phase_error': 0.0 } }, 'modulation_frequencies': { 'q0:mw-q0.01': {'interm_freq': 80000000.0}, 'q1:mw-q1.01': {'interm_freq': 80000000.0}, 'q0:res-q0.ro': {'lo_freq': 7500000000.0}, 'q1:res-q1.ro': {'lo_freq': 7500000000.0} } }, 'connectivity': { 'graph': [ ['cluster0.module6.complex_output_0', 'q0:mw'], ['cluster0.module6.complex_output_1', 'q1:mw'], ['cluster0.module2.real_output_0', 'q0:fl'], ['cluster0.module2.real_output_1', 'q1:fl'], ['cluster0.module8.complex_output_0', 'q0:res'], ['cluster0.module8.complex_output_0', 'q1:res'] ] } }
[17]:
quantum_device.to_json_file("devices/")
[17]:
'devices/device_2q_2024-09-18_14-58-38_UTC.json'