See also
A Jupyter notebook version of this tutorial can be downloaded here
.
Randomized benchmarking#
This application example is qubit type agnostic, i.e. it can be applied for any type of qubit (e.g. transmon, spin, etc.).
For demonstration, we will assume that the qubit type is flux-tunable transmon.
The experiments can also be executed using a dummy Qblox device that is created via an instance of the Cluster
class, and is initialized with a dummy configuration. However, when using a dummy device, the analysis will not work because the experiments will return np.nan
values.
Hardware setup#
In this section we configure the hardware configuration which specifies the connectivity of our system.
Configuration file#
We will load a template hardware configuration file for a 2-qubit system (we name the qubits q0
and q1
), with dedicated flux-control lines.
The hardware connectivity is as follows, by cluster slot: - QCM (Slot 2) - \(\text{O}^{1}\): Flux line for q0
. - \(\text{O}^{2}\): Flux line for q1
. - QCM-RF (Slot 6) - \(\text{O}^{1}\): Drive line for q0
using fixed 80 MHz IF. - \(\text{O}^{2}\): Drive line for q1
using fixed 80 MHz IF. - QRM-RF (Slot 8) - \(\text{O}^{1}\) and \(\text{I}^{1}\): Shared readout line for q0
/q1
using a fixed LO set at 7.5 GHz.
Note that in the hardware configuration below the mixers are uncorrected, but for high fidelity experiments this should also be done for all the RF modules.
[1]:
from __future__ import annotations
import json
with open("configs/tuning_transmon_coupled_pair_hardware_config.json") as hw_cfg_json_file:
hardware_cfg = json.load(hw_cfg_json_file)
Scan For Clusters#
We scan for the available devices connected via ethernet using the Plug & Play functionality of the Qblox Instruments package (see Plug & Play for more info).
!qblox-pnp list
[2]:
cluster_ip = None # To run this example on hardware, fill in the IP address of the cluster here
cluster_name = "cluster0"
Connect to Cluster#
We now make a connection with the Cluster.
[3]:
from qcodes.instrument import find_or_create_instrument
from qblox_instruments import Cluster, ClusterType
cluster = find_or_create_instrument(
Cluster,
recreate=True,
name=cluster_name,
identifier=cluster_ip,
dummy_cfg=(
{
2: ClusterType.CLUSTER_QCM,
4: ClusterType.CLUSTER_QRM,
6: ClusterType.CLUSTER_QCM_RF,
8: ClusterType.CLUSTER_QRM_RF,
}
if cluster_ip is None
else None
),
)
Experiment setup#
Quantum device settings#
Here we load our QuantumDevice
and our qubit parameters, check out this tutorial for more details.
In short, a QuantumDevice
contains device elements which we can use to save our found parameters.
In this example we assume that the system has already been characterized.
[4]:
from quantify_scheduler.device_under_test.quantum_device import QuantumDevice
quantum_device = QuantumDevice.from_json_file("devices/transmon_device_2q.json")
q0 = quantum_device.get_element("q0")
q1 = quantum_device.get_element("q1")
quantum_device.hardware_config(hardware_cfg)
Configure measurement control loop#
We will use a MeasurementControl
object for data acquisition as well as an InstrumentCoordinator
for controlling the instruments in our setup.
The PlotMonitor
is used for live plotting.
All of these are then associated with the QuantumDevice
.
[5]:
from quantify_core.measurement.control import MeasurementControl
from quantify_core.visualization.pyqt_plotmon import PlotMonitor_pyqt as PlotMonitor
from quantify_scheduler.instrument_coordinator import InstrumentCoordinator
from quantify_scheduler.instrument_coordinator.components.qblox import ClusterComponent
def configure_measurement_control_loop(
device: QuantumDevice, cluster: Cluster, live_plotting: bool = False
):
meas_ctrl = find_or_create_instrument(MeasurementControl, recreate=True, name="meas_ctrl")
ic = find_or_create_instrument(InstrumentCoordinator, recreate=True, name="ic")
# Add cluster to instrument coordinator
ic_cluster = ClusterComponent(cluster)
ic.add_component(ic_cluster)
if live_plotting:
# Associate plot monitor with measurement controller
plotmon = find_or_create_instrument(PlotMonitor, recreate=False, name="PlotMonitor")
meas_ctrl.instr_plotmon(plotmon.name)
# Associate measurement controller and instrument coordinator with the quantum device
device.instr_measurement_control(meas_ctrl.name)
device.instr_instrument_coordinator(ic.name)
return (meas_ctrl, ic)
meas_ctrl, instrument_coordinator = configure_measurement_control_loop(quantum_device, cluster)
Set data directory#
This directory is where all of the data pertaining to our experiment will be saved.
[6]:
import quantify_core.data.handling as dh
# Enter your own dataset directory here!
dh.set_datadir(dh.default_datadir())
Data will be saved in:
/root/quantify-data
Configure external flux control#
We need to have some way of controlling the external flux.
This can be done by setting an output bias on a module of the cluster which is then connected to the flux-control line.
Here we are nullifying the external flux on both qubits.
[7]:
flux_settables = {q0.name: cluster.module2.out0_offset, q1.name: cluster.module2.out1_offset}
for flux_settable in flux_settables.values():
flux_settable.inter_delay = 100e-9 # Delay time in seconds between consecutive set operations.
flux_settable.step = 0.3e-3 # Stepsize in V that this Parameter uses during set operation.
flux_settable() # Get before setting to avoid jumps.
flux_settable(0.0)
[8]:
flux_settables[q0.name](0.0) # enter your own value here for qubit 0
flux_settables[q1.name](0.0) # enter your own value here for qubit 1
Experiment#
[9]:
from typing import TYPE_CHECKING
import numpy as np
from pycqed_randomized_benchmarking.randomized_benchmarking import randomized_benchmarking_sequence
from pycqed_randomized_benchmarking.two_qubit_clifford_group import (
SingleQubitClifford,
TwoQubitClifford,
common_cliffords,
)
from quantify_scheduler import Schedule
from quantify_scheduler.backends.qblox.constants import MIN_TIME_BETWEEN_OPERATIONS
from quantify_scheduler.operations.gate_library import CZ, X90, Y90, Measure, Reset, Rxy, X, Y
if TYPE_CHECKING:
from collections.abc import Iterable
def randomized_benchmarking_schedule(
qubit_specifier: str | Iterable[str],
lengths: Iterable[int],
desired_net_clifford_index: int | None = common_cliffords["I"],
seed: int | None = None,
repetitions: int = 1,
) -> Schedule:
"""
Generate a randomized benchmarking schedule.
All Clifford gates in the schedule are decomposed into products
of the following unitary operations:
{'CZ', 'I', 'Rx(pi)', 'Rx(pi/2)', 'Ry(pi)', 'Ry(pi/2)', 'Rx(-pi/2)', 'Ry(-pi/2)'}
Parameters
----------
qubit_specifier
String or iterable of strings specifying which qubits to conduct the
experiment on. If one name is specified, then single qubit randomized
benchmarking is performed. If two names are specified, then two-qubit
randomized benchmarking is performed.
lengths
Array of non-negative integers specifying how many Cliffords
to apply before each recovery and measurement. If lengths is of size M
then there will be M recoveries and M measurements in the schedule.
desired_net_clifford_index
Optional index specifying what the net Clifford gate should be. If None
is specified, then no recovery Clifford is calculated. The default index
is 0, which corresponds to the identity gate. For a map of common Clifford
gates to Clifford indices, please see: two_qubit_clifford_group.common_cliffords
seed
Optional random seed to use for all lengths m. If the seed is None,
then a new seed will be used for each length m.
repetitions
Optional positive integer specifying the amount of times the
Schedule will be repeated. This corresponds to the number of averages
for each measurement.
"""
# ---- Error handling and argument parsing ----#
lengths = np.asarray(lengths, dtype=int)
if isinstance(qubit_specifier, str):
qubit_names = [qubit_specifier]
else:
qubit_names = [q for q in qubit_specifier]
n = len(qubit_names)
if n not in (1, 2):
raise ValueError("Only single and two-qubit randomized benchmarking supported.")
if len(set(qubit_names)) != n:
raise ValueError("Two-qubit randomized benchmarking on the same qubit is ill-defined.")
# ---- PycQED mappings ----#
pycqed_qubit_map = {f"q{idx}": name for idx, name in enumerate(qubit_names)}
pycqed_operation_map = {
"X180": lambda q: X(pycqed_qubit_map[q]),
"X90": lambda q: X90(pycqed_qubit_map[q]),
"Y180": lambda q: Y(pycqed_qubit_map[q]),
"Y90": lambda q: Y90(pycqed_qubit_map[q]),
"mX90": lambda q: Rxy(qubit=pycqed_qubit_map[q], phi=0.0, theta=-90.0),
"mY90": lambda q: Rxy(qubit=pycqed_qubit_map[q], phi=90.0, theta=-90.0),
"CZ": lambda q: CZ(qC=pycqed_qubit_map[q[0]], qT=pycqed_qubit_map[q[1]]),
}
# ---- Build RB schedule ----#
sched = Schedule(
"Randomized benchmarking on " + " and ".join(qubit_names), repetitions=repetitions
)
clifford_class = [SingleQubitClifford, TwoQubitClifford][n - 1]
# two-qubit RB needs buffer time for phase corrections on drive lines
operation_buffer_time = [0.0, MIN_TIME_BETWEEN_OPERATIONS * 4e-9][n - 1]
for idx, m in enumerate(lengths):
sched.add(Reset(*qubit_names))
if m > 0:
# m-sized random sample of representatives in the quotient group C_n / U(1)
# where C_n is the n-qubit Clifford group and U(1) is the circle group
rb_sequence_m: list[int] = randomized_benchmarking_sequence(
m, number_of_qubits=n, seed=seed, desired_net_cl=desired_net_clifford_index
)
for clifford_gate_idx in rb_sequence_m:
cl_decomp = clifford_class(clifford_gate_idx).gate_decomposition
operations = [
pycqed_operation_map[gate](q) for (gate, q) in cl_decomp if gate != "I"
]
for op in operations:
sched.add(op, rel_time=operation_buffer_time)
sched.add(Measure(*qubit_names, acq_index=idx))
return sched
Generating Clifford hash tables.
Successfully generated Clifford hash tables.
Single qubit RB example#
[10]:
from qcodes import ManualParameter
from quantify_scheduler.gettables import ScheduleGettable
length = ManualParameter(name="length", unit="#", label="Number of Clifford gates")
length.batched = True
length.batch_size = 10
rb_sched_kwargs = {"qubit_specifier": q0.name, "lengths": length}
gettable = ScheduleGettable(
quantum_device,
schedule_function=randomized_benchmarking_schedule,
schedule_kwargs=rb_sched_kwargs,
real_imag=False,
batched=True,
num_channels=1,
)
meas_ctrl.gettables(gettable)
[11]:
length_setpoints = np.arange(0, 100, 2)
meas_ctrl.settables(length)
meas_ctrl.setpoints(length_setpoints)
quantum_device.cfg_sched_repetitions(200)
rb_ds = meas_ctrl.run("Randomized benchmarking on " + rb_sched_kwargs["qubit_specifier"])
rb_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
--- (None) ---
Batched settable(s):
length
Batch size limit: 10
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1220: ValidationWarning: Setting `auto_lo_cal=on_lo_interm_freq_change` will overwrite settings `dc_offset_i=0.0` and `dc_offset_q=0.0`. To suppress this warning, do not set either `dc_offset_i` or `dc_offset_q` for this port-clock.
warnings.warn(
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
[11]:
<xarray.Dataset> Size: 1kB Dimensions: (dim_0: 50) Coordinates: x0 (dim_0) int64 400B 0 2 4 6 8 10 12 14 ... 84 86 88 90 92 94 96 98 Dimensions without coordinates: dim_0 Data variables: y0 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan y1 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan Attributes: tuid: 20241113-023551-560-5e6df6 name: Randomized benchmarking on q0 grid_2d: False grid_2d_uniformly_spaced: False 1d_2_settables_uniformly_spaced: False
Two qubit RB example#
[12]:
length = ManualParameter(name="length", unit="#", label="Number of Clifford gates")
length.batched = True
length.batch_size = 10
rb_sched_kwargs = {"qubit_specifier": [q0.name, q1.name], "lengths": length}
gettable = ScheduleGettable(
quantum_device,
schedule_function=randomized_benchmarking_schedule,
schedule_kwargs=rb_sched_kwargs,
real_imag=False,
batched=True,
num_channels=2,
)
meas_ctrl.gettables(gettable)
[13]:
length_setpoints = np.arange(0, 100, 2)
meas_ctrl.settables(length)
meas_ctrl.setpoints(length_setpoints)
quantum_device.cfg_sched_repetitions(200)
rb_ds = meas_ctrl.run(
"Randomized benchmarking on " + " and ".join(rb_sched_kwargs["qubit_specifier"])
)
rb_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
--- (None) ---
Batched settable(s):
length
Batch size limit: 10
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/types/qblox.py:1235: ValidationWarning: Setting `auto_sideband_cal=on_interm_freq_change` will overwrite settings `amp_ratio=1.0` and `phase_error=0.0`. To suppress this warning, do not set either `amp_ratio` or `phase_error` for this port-clock.
warnings.warn(
[13]:
<xarray.Dataset> Size: 2kB Dimensions: (dim_0: 50) Coordinates: x0 (dim_0) int64 400B 0 2 4 6 8 10 12 14 ... 84 86 88 90 92 94 96 98 Dimensions without coordinates: dim_0 Data variables: y0 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan y1 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan y2 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan y3 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan Attributes: tuid: 20241113-023553-470-02d27e name: Randomized benchmarking on q0 and q1 grid_2d: False grid_2d_uniformly_spaced: False 1d_2_settables_uniformly_spaced: False
[14]:
import rich
rich.print(quantum_device.hardware_config())
{ 'config_type': 'quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig', 'hardware_description': { 'cluster0': { 'instrument_type': 'Cluster', 'modules': { '6': {'instrument_type': 'QCM_RF'}, '2': {'instrument_type': 'QCM'}, '8': {'instrument_type': 'QRM_RF'} }, 'sequence_to_file': False, 'ref': 'internal' } }, 'hardware_options': { 'output_att': {'q0:mw-q0.01': 10, 'q1:mw-q1.01': 10, 'q0:res-q0.ro': 60, 'q1:res-q1.ro': 60}, 'mixer_corrections': { 'q0:mw-q0.01': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change', 'dc_offset_i': None, 'dc_offset_q': None, 'amp_ratio': 1.0, 'phase_error': 0.0 }, 'q1:mw-q1.01': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change', 'dc_offset_i': None, 'dc_offset_q': None, 'amp_ratio': 1.0, 'phase_error': 0.0 }, 'q0:res-q0.ro': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change', 'dc_offset_i': None, 'dc_offset_q': None, 'amp_ratio': 1.0, 'phase_error': 0.0 }, 'q1:res-q1.ro': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change', 'dc_offset_i': None, 'dc_offset_q': None, 'amp_ratio': 1.0, 'phase_error': 0.0 } }, 'modulation_frequencies': { 'q0:mw-q0.01': {'interm_freq': 80000000.0}, 'q1:mw-q1.01': {'interm_freq': 80000000.0}, 'q0:res-q0.ro': {'lo_freq': 7500000000.0}, 'q1:res-q1.ro': {'lo_freq': 7500000000.0} } }, 'connectivity': { 'graph': [ ['cluster0.module6.complex_output_0', 'q0:mw'], ['cluster0.module6.complex_output_1', 'q1:mw'], ['cluster0.module2.real_output_0', 'q0:fl'], ['cluster0.module2.real_output_1', 'q1:fl'], ['cluster0.module8.complex_output_0', 'q0:res'], ['cluster0.module8.complex_output_0', 'q1:res'] ] } }