See also
A Jupyter notebook version of this tutorial can be downloaded here
.
Resonator Spectroscopy#
Here we go through resonator discovery and punchout spectroscopy for identifying the resonator and measuring it’s resonant frequency.
[1]:
import json
import numpy as np
import rich # noqa:F401
from qcodes.parameters import ManualParameter
import quantify_core.data.handling as dh
from quantify_scheduler import QuantumDevice, Schedule, ScheduleGettable
from quantify_scheduler.operations import IdlePulse, Measure
from utils import initialize_hardware, run # noqa:F401
[2]:
hw_config_path = "configs/tuning_spin_coupled_pair_hardware_config.json"
device_path = "devices/spin_device_2q.json"
[3]:
with open(hw_config_path) as hw_cfg_json_file:
hardware_cfg = json.load(hw_cfg_json_file)
# Enter your own dataset directory here!
dh.set_datadir(dh.default_datadir())
Data will be saved in:
/root/quantify-data
[4]:
quantum_device = QuantumDevice.from_json_file(device_path)
qubit = quantum_device.get_element("q0")
quantum_device.hardware_config(hardware_cfg)
meas_ctrl, _, cluster = initialize_hardware(quantum_device, ip=None)
Setup#
In this section we configure the hardware configuration which specifies the connectivity of our system.
The experiments of this tutorial are meant to be executed with a Qblox Cluster controlling a transmon system. The experiments can also be executed using a dummy Qblox device that is created via an instance of the Cluster
class, and is initialized with a dummy configuration. When using a dummy device, the analysis will not work because the experiments will return np.nan
values.
Configuration file#
This is a template hardware configuration file for a 2-qubit system with a flux-control line which can be used to tune the qubit frequency. We will only work with qubit 0.
The hardware connectivity is as follows, by cluster slot:
QCM (Slot 2)
\(\text{O}^{1}\): Flux line for
q0
.\(\text{O}^{2}\): Flux line for
q1
.
QCM-RF (Slot 6)
\(\text{O}^{1}\): Drive line for
q0
using fixed 80 MHz IF.\(\text{O}^{2}\): Drive line for
q1
using fixed 80 MHz IF.
QRM-RF (Slot 8)
\(\text{O}^{1}\) and \(\text{I}^{1}\): Shared readout line for
q0
/q1
using a fixed LO set at 7.5 GHz.
Note that in the hardware configuration below the mixers are uncorrected, but for high fidelity experiments this should also be done for all the modules.
Quantum device settings#
Here we initialize our QuantumDevice
and our qubit parameters, checkout this tutorial for further details.
In short, a QuantumDevice
contains device elements where we save our found parameters. Here we are loading a template for 2 qubits, but we will only use qubit 0.
Resonator Spectroscopy#
[5]:
def resonator_spectroscopy_schedule(
qubit, # noqa: ANN001
freqs: np.array,
repetitions: int = 1,
) -> Schedule:
"""Schedule to sweep the resonator frequency."""
sched = Schedule("schedule", repetitions=repetitions)
for i, freq in enumerate(freqs):
sched.add(
Measure(
qubit.name,
acq_index=i,
freq=freq,
)
)
sched.add(IdlePulse(8e-9))
return sched
freqs = ManualParameter(name="freq", unit="Hz", label="Frequency")
freqs.batched = True
freqs.batch_size = 100
spec_sched_kwargs = dict(
qubit=qubit,
freqs=freqs,
)
gettable = ScheduleGettable(
quantum_device,
schedule_function=resonator_spectroscopy_schedule,
schedule_kwargs=spec_sched_kwargs,
real_imag=False,
batched=True,
)
meas_ctrl.gettables(gettable)
[6]:
quantum_device.cfg_sched_repetitions(400)
center = qubit.clock_freqs.readout()
frequency_setpoints = np.linspace(center - 20e6, center + 20e6, 300)
meas_ctrl.settables(freqs)
meas_ctrl.setpoints(frequency_setpoints)
rs_ds = meas_ctrl.run("resonator spectroscopy")
rs_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
--- (None) ---
Batched settable(s):
freq
Batch size limit: 100
[6]:
<xarray.Dataset> Size: 7kB Dimensions: (dim_0: 300) Coordinates: x0 (dim_0) float64 2kB 1e+08 1.001e+08 1.003e+08 ... 1.399e+08 1.4e+08 Dimensions without coordinates: dim_0 Data variables: y0 (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan y1 (dim_0) float64 2kB nan nan nan nan nan nan ... nan nan nan nan nan Attributes: tuid: 20250114-023717-708-f4ad8a name: resonator spectroscopy grid_2d: False grid_2d_uniformly_spaced: False 1d_2_settables_uniformly_spaced: False
[7]:
qubit.clock_freqs.readout(qubit.clock_freqs.readout() + 100e3)
Resonator punchout#
[8]:
def resonator_punchout_schedule(
qubit, # noqa: ANN001
freqs: np.array,
ro_pulse_amps: np.array,
repetitions: int = 1,
) -> Schedule:
"""Schedule to sweep the resonator frequency."""
sched = Schedule("schedule", repetitions=repetitions)
index = 0
freqs, ro_pulse_amps = np.unique(freqs), np.unique(ro_pulse_amps)
for freq in freqs:
for amp in ro_pulse_amps:
sched.add(Measure(qubit.name, acq_index=index, freq=freq, pulse_amp=amp))
sched.add(IdlePulse(8e-9))
index += 1
return sched
freqs = ManualParameter(name="freq", unit="Hz", label="Frequency")
freqs.batched = True
ro_pulse_amps = ManualParameter(name="ro_pulse_amp", unit="", label="Readout pulse amplitude")
ro_pulse_amps.batched = True
spec_sched_kwargs = dict(
qubit=qubit,
freqs=freqs,
ro_pulse_amps=ro_pulse_amps,
)
gettable = ScheduleGettable(
quantum_device,
schedule_function=resonator_punchout_schedule,
schedule_kwargs=spec_sched_kwargs,
real_imag=False,
batched=True,
)
meas_ctrl.gettables(gettable)
[9]:
quantum_device.cfg_sched_repetitions(80)
center = qubit.clock_freqs.readout()
frequency_setpoints = np.linspace(center - 20e6, center + 20e6, 100)
amplitude_setpoints = np.linspace(0, 1, 10)
meas_ctrl.settables([freqs, ro_pulse_amps])
meas_ctrl.setpoints_grid((frequency_setpoints, amplitude_setpoints))
punchout_ds = meas_ctrl.run("resonator punchout")
punchout_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
--- (None) ---
Batched settable(s):
freq, ro_pulse_amp
Batch size limit: 1000
/builds/qblox/packages/software/qblox_instruments_docs/.venv/lib/python3.9/site-packages/quantify_scheduler/backends/qblox/compiler_abc.py:676: RuntimeWarning: Number of instructions (13810) compiled for 'seq0' of QRMCompiler 'cluster0_module4' exceeds the maximum supported number of instructions in Q1ASM programs for QRMCompiler (12288).
warnings.warn(
[9]:
<xarray.Dataset> Size: 32kB Dimensions: (dim_0: 1000) Coordinates: x0 (dim_0) float64 8kB 1.001e+08 1.005e+08 ... 1.397e+08 1.401e+08 x1 (dim_0) float64 8kB 0.0 0.0 0.0 0.0 0.0 0.0 ... 1.0 1.0 1.0 1.0 1.0 Dimensions without coordinates: dim_0 Data variables: y0 (dim_0) float64 8kB nan nan nan nan nan nan ... nan nan nan nan nan y1 (dim_0) float64 8kB nan nan nan nan nan nan ... nan nan nan nan nan Attributes: tuid: 20250114-023718-647-790576 name: resonator punchout grid_2d: True grid_2d_uniformly_spaced: True 1d_2_settables_uniformly_spaced: False xlen: 100 ylen: 10
[10]:
rich.print(quantum_device.hardware_config())
{ 'config_type': 'quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig', 'hardware_description': { 'cluster0': { 'instrument_type': 'Cluster', 'modules': { '2': {'instrument_type': 'QCM'}, '4': {'instrument_type': 'QRM'}, '6': {'instrument_type': 'QCM_RF'} }, 'sequence_to_file': False, 'ref': 'internal' } }, 'hardware_options': { 'output_att': {'q0:mw-q0.f_larmor': 0, 'q1:mw-q1.f_larmor': 0}, 'mixer_corrections': { 'q0:mw-q0.f_larmor': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change' }, 'q1:mw-q1.f_larmor': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change' } }, 'modulation_frequencies': { 'q0:mw-q0.f_larmor': {'interm_freq': 80000000.0}, 'q1:mw-q1.f_larmor': {'interm_freq': 70000000.0} } }, 'connectivity': { 'graph': [ ['cluster0.module2.real_output_0', 'q0:gt'], ['cluster0.module2.real_output_1', 'q1:gt'], ['cluster0.module4.real_output_0', 'q0:res'], ['cluster0.module4.real_output_0', 'q1:res'], ['cluster0.module6.complex_output_0', 'q0:mw'], ['cluster0.module6.complex_output_1', 'q1:mw'] ] } }
[11]:
quantum_device.to_json_file("devices/")
[11]:
'devices/device_2q_2025-01-14_02-37-20_UTC.json'