See also
A Jupyter notebook version of this tutorial can be downloaded here
.
Randomized benchmarking#
This application example is qubit type agnostic, i.e. it can be applied for any type of qubit (e.g. transmon, spin, etc.).
For demonstration, we will assume that the qubit type is flux-tunable transmon.
The experiments can also be executed using a dummy Qblox device that is created via an instance of the Cluster
class, and is initialized with a dummy configuration. However, when using a dummy device, the analysis will not work because the experiments will return np.nan
values.
Hardware setup#
In this section we configure the hardware configuration which specifies the connectivity of our system.
Configuration file#
We will load a template hardware configuration file for a 2-qubit system (we name the qubits q0
and q1
), with dedicated flux-control lines.
The hardware connectivity is as follows, by cluster slot:
QCM (Slot 2)
\(\text{O}^{1}\): Flux line for
q0
.\(\text{O}^{2}\): Flux line for
q1
.
QCM-RF (Slot 6)
\(\text{O}^{1}\): Drive line for
q0
using fixed 80 MHz IF.\(\text{O}^{2}\): Drive line for
q1
using fixed 80 MHz IF.
QRM-RF (Slot 8)
\(\text{O}^{1}\) and \(\text{I}^{1}\): Shared readout line for
q0
/q1
using a fixed LO set at 7.5 GHz.
Note that in the hardware configuration below the mixers are uncorrected, but for high fidelity experiments this should also be done for all the RF modules.
[1]:
from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from pycqed_randomized_benchmarking.randomized_benchmarking import randomized_benchmarking_sequence
from pycqed_randomized_benchmarking.two_qubit_clifford_group import (
SingleQubitClifford,
TwoQubitClifford,
common_cliffords,
)
from qcodes import ManualParameter
from quantify_scheduler import Schedule, ScheduleGettable
from quantify_scheduler.backends.qblox.constants import MIN_TIME_BETWEEN_OPERATIONS
from quantify_scheduler.operations import CZ, X90, Y90, Measure, Reset, Rxy, X, Y
if TYPE_CHECKING:
from collections.abc import Iterable
import json
import rich # noqa:F401
import quantify_core.data.handling as dh
from quantify_scheduler import QuantumDevice
from utils import initialize_hardware, run # noqa:F401
Generating Clifford hash tables.
Successfully generated Clifford hash tables.
[2]:
hw_config_path = "configs/tuning_transmon_coupled_pair_hardware_config.json"
device_path = "devices/transmon_device_2q.json"
[3]:
with open(hw_config_path) as hw_cfg_json_file:
hardware_cfg = json.load(hw_cfg_json_file)
# Enter your own dataset directory here!
dh.set_datadir(dh.default_datadir())
Data will be saved in:
/root/quantify-data
[4]:
quantum_device = QuantumDevice.from_json_file(device_path)
qubit = quantum_device.get_element("q0")
quantum_device.hardware_config(hardware_cfg)
meas_ctrl, _, cluster = initialize_hardware(quantum_device, ip=None)
Setup#
In this section we configure the hardware configuration which specifies the connectivity of our system.
The experiments of this tutorial are meant to be executed with a Qblox Cluster controlling a transmon system. The experiments can also be executed using a dummy Qblox device that is created via an instance of the Cluster
class, and is initialized with a dummy configuration. When using a dummy device, the analysis will not work because the experiments will return np.nan
values.
Configuration file#
This is a template hardware configuration file for a 2-qubit system with a flux-control line which can be used to tune the qubit frequency. We will only work with qubit 0.
The hardware connectivity is as follows, by cluster slot:
QCM (Slot 2)
\(\text{O}^{1}\): Flux line for
q0
.\(\text{O}^{2}\): Flux line for
q1
.
QCM-RF (Slot 6)
\(\text{O}^{1}\): Drive line for
q0
using fixed 80 MHz IF.\(\text{O}^{2}\): Drive line for
q1
using fixed 80 MHz IF.
QRM-RF (Slot 8)
\(\text{O}^{1}\) and \(\text{I}^{1}\): Shared readout line for
q0
/q1
using a fixed LO set at 7.5 GHz.
Note that in the hardware configuration below the mixers are uncorrected, but for high fidelity experiments this should also be done for all the modules.
Quantum device settings#
Here we initialize our QuantumDevice
and our qubit parameters, checkout this tutorial for further details.
In short, a QuantumDevice
contains device elements where we save our found parameters. Here we are loading a template for 2 qubits, but we will only use qubit 0.
[5]:
q0 = quantum_device.get_element("q0")
q1 = quantum_device.get_element("q1")
Configure external flux control#
We need to have some way of controlling the external flux.
This can be done by setting an output bias on a module of the cluster which is then connected to the flux-control line.
Here we are nullifying the external flux on both qubits.
[6]:
flux_settables = {q0.name: cluster.module2.out0_offset, q1.name: cluster.module2.out1_offset}
for flux_settable in flux_settables.values():
flux_settable.inter_delay = 100e-9 # Delay time in seconds between consecutive set operations.
flux_settable.step = 0.3e-3 # Stepsize in V that this Parameter uses during set operation.
flux_settable() # Get before setting to avoid jumps.
flux_settable(0.0)
[7]:
flux_settables[q0.name](0.0) # enter your own value here for qubit 0
flux_settables[q1.name](0.0) # enter your own value here for qubit 1
Experiment#
[8]:
def randomized_benchmarking_schedule(
qubit_specifier: str | Iterable[str],
lengths: Iterable[int],
desired_net_clifford_index: int | None = common_cliffords["I"],
seed: int | None = None,
repetitions: int = 1,
) -> Schedule:
"""
Generate a randomized benchmarking schedule.
All Clifford gates in the schedule are decomposed into products
of the following unitary operations:
{'CZ', 'I', 'Rx(pi)', 'Rx(pi/2)', 'Ry(pi)', 'Ry(pi/2)', 'Rx(-pi/2)', 'Ry(-pi/2)'}
Parameters
----------
qubit_specifier
String or iterable of strings specifying which qubits to conduct the
experiment on. If one name is specified, then single qubit randomized
benchmarking is performed. If two names are specified, then two-qubit
randomized benchmarking is performed.
lengths
Array of non-negative integers specifying how many Cliffords
to apply before each recovery and measurement. If lengths is of size M
then there will be M recoveries and M measurements in the schedule.
desired_net_clifford_index
Optional index specifying what the net Clifford gate should be. If None
is specified, then no recovery Clifford is calculated. The default index
is 0, which corresponds to the identity gate. For a map of common Clifford
gates to Clifford indices, please see: two_qubit_clifford_group.common_cliffords
seed
Optional random seed to use for all lengths m. If the seed is None,
then a new seed will be used for each length m.
repetitions
Optional positive integer specifying the amount of times the
Schedule will be repeated. This corresponds to the number of averages
for each measurement.
"""
# ---- Error handling and argument parsing ----#
lengths = np.asarray(lengths, dtype=int)
if isinstance(qubit_specifier, str):
qubit_names = [qubit_specifier]
else:
qubit_names = [q for q in qubit_specifier]
n = len(qubit_names)
if n not in (1, 2):
raise ValueError("Only single and two-qubit randomized benchmarking supported.")
if len(set(qubit_names)) != n:
raise ValueError("Two-qubit randomized benchmarking on the same qubit is ill-defined.")
# ---- PycQED mappings ----#
pycqed_qubit_map = {f"q{idx}": name for idx, name in enumerate(qubit_names)}
pycqed_operation_map = {
"X180": lambda q: X(pycqed_qubit_map[q]),
"X90": lambda q: X90(pycqed_qubit_map[q]),
"Y180": lambda q: Y(pycqed_qubit_map[q]),
"Y90": lambda q: Y90(pycqed_qubit_map[q]),
"mX90": lambda q: Rxy(qubit=pycqed_qubit_map[q], phi=0.0, theta=-90.0),
"mY90": lambda q: Rxy(qubit=pycqed_qubit_map[q], phi=90.0, theta=-90.0),
"CZ": lambda q: CZ(qC=pycqed_qubit_map[q[0]], qT=pycqed_qubit_map[q[1]]),
}
# ---- Build RB schedule ----#
sched = Schedule(
"Randomized benchmarking on " + " and ".join(qubit_names), repetitions=repetitions
)
clifford_class = [SingleQubitClifford, TwoQubitClifford][n - 1]
# two-qubit RB needs buffer time for phase corrections on drive lines
operation_buffer_time = [0.0, MIN_TIME_BETWEEN_OPERATIONS * 4e-9][n - 1]
for idx, m in enumerate(lengths):
sched.add(Reset(*qubit_names))
if m > 0:
# m-sized random sample of representatives in the quotient group C_n / U(1)
# where C_n is the n-qubit Clifford group and U(1) is the circle group
rb_sequence_m: list[int] = randomized_benchmarking_sequence(
m, number_of_qubits=n, seed=seed, desired_net_cl=desired_net_clifford_index
)
for clifford_gate_idx in rb_sequence_m:
cl_decomp = clifford_class(clifford_gate_idx).gate_decomposition
operations = [
pycqed_operation_map[gate](q) for (gate, q) in cl_decomp if gate != "I"
]
for op in operations:
sched.add(op, rel_time=operation_buffer_time)
sched.add(Measure(*qubit_names, acq_index=idx))
return sched
Single qubit RB example#
[9]:
length = ManualParameter(name="length", unit="#", label="Number of Clifford gates")
length.batched = True
length.batch_size = 10
rb_sched_kwargs = {"qubit_specifier": q0.name, "lengths": length}
gettable = ScheduleGettable(
quantum_device,
schedule_function=randomized_benchmarking_schedule,
schedule_kwargs=rb_sched_kwargs,
real_imag=False,
batched=True,
num_channels=1,
)
meas_ctrl.gettables(gettable)
[10]:
length_setpoints = np.arange(0, 100, 2)
meas_ctrl.settables(length)
meas_ctrl.setpoints(length_setpoints)
quantum_device.cfg_sched_repetitions(200)
rb_ds = meas_ctrl.run("Randomized benchmarking on " + rb_sched_kwargs["qubit_specifier"])
rb_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
--- (None) ---
Batched settable(s):
length
Batch size limit: 10
[10]:
<xarray.Dataset> Size: 1kB Dimensions: (dim_0: 50) Coordinates: x0 (dim_0) int64 400B 0 2 4 6 8 10 12 14 ... 84 86 88 90 92 94 96 98 Dimensions without coordinates: dim_0 Data variables: y0 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan y1 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan Attributes: tuid: 20250114-023609-474-c8c2f2 name: Randomized benchmarking on q0 grid_2d: False grid_2d_uniformly_spaced: False 1d_2_settables_uniformly_spaced: False
Two qubit RB example#
[11]:
length = ManualParameter(name="length", unit="#", label="Number of Clifford gates")
length.batched = True
length.batch_size = 10
rb_sched_kwargs = {"qubit_specifier": [q0.name, q1.name], "lengths": length}
gettable = ScheduleGettable(
quantum_device,
schedule_function=randomized_benchmarking_schedule,
schedule_kwargs=rb_sched_kwargs,
real_imag=False,
batched=True,
num_channels=2,
)
meas_ctrl.gettables(gettable)
[12]:
length_setpoints = np.arange(0, 100, 2)
meas_ctrl.settables(length)
meas_ctrl.setpoints(length_setpoints)
quantum_device.cfg_sched_repetitions(200)
rb_ds = meas_ctrl.run(
"Randomized benchmarking on " + " and ".join(rb_sched_kwargs["qubit_specifier"])
)
rb_ds
Starting batched measurement...
Iterative settable(s) [outer loop(s)]:
--- (None) ---
Batched settable(s):
length
Batch size limit: 10
[12]:
<xarray.Dataset> Size: 2kB Dimensions: (dim_0: 50) Coordinates: x0 (dim_0) int64 400B 0 2 4 6 8 10 12 14 ... 84 86 88 90 92 94 96 98 Dimensions without coordinates: dim_0 Data variables: y0 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan y1 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan y2 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan y3 (dim_0) float64 400B nan nan nan nan nan ... nan nan nan nan nan Attributes: tuid: 20250114-023611-485-12b2ac name: Randomized benchmarking on q0 and q1 grid_2d: False grid_2d_uniformly_spaced: False 1d_2_settables_uniformly_spaced: False
[13]:
rich.print(quantum_device.hardware_config())
{ 'config_type': 'quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig', 'hardware_description': { 'cluster0': { 'instrument_type': 'Cluster', 'modules': { '6': {'instrument_type': 'QCM_RF'}, '2': {'instrument_type': 'QCM'}, '8': {'instrument_type': 'QRM_RF'} }, 'sequence_to_file': False, 'ref': 'internal' } }, 'hardware_options': { 'output_att': {'q0:mw-q0.01': 10, 'q1:mw-q1.01': 10, 'q0:res-q0.ro': 60, 'q1:res-q1.ro': 60}, 'mixer_corrections': { 'q0:mw-q0.01': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change' }, 'q1:mw-q1.01': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change' }, 'q0:res-q0.ro': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change' }, 'q1:res-q1.ro': { 'auto_lo_cal': 'on_lo_interm_freq_change', 'auto_sideband_cal': 'on_interm_freq_change' } }, 'modulation_frequencies': { 'q0:mw-q0.01': {'interm_freq': 80000000.0}, 'q1:mw-q1.01': {'interm_freq': 80000000.0}, 'q0:res-q0.ro': {'lo_freq': 7500000000.0}, 'q1:res-q1.ro': {'lo_freq': 7500000000.0} } }, 'connectivity': { 'graph': [ ['cluster0.module6.complex_output_0', 'q0:mw'], ['cluster0.module6.complex_output_1', 'q1:mw'], ['cluster0.module2.real_output_0', 'q0:fl'], ['cluster0.module2.real_output_1', 'q1:fl'], ['cluster0.module8.complex_output_0', 'q0:res'], ['cluster0.module8.complex_output_0', 'q1:res'] ] } }
[14]:
quantum_device.to_json_file("devices/")
[14]:
'devices/device_2q_2025-01-14_02-36-19_UTC.json'