qblox_scheduler.analysis.conditional_oscillation_analysis#
Module containing an analysis class for the conditional oscillation experiment.
Classes#
Analysis class for the conditional oscillation experiment. |
Functions#
|
|
|
Module Contents#
- _add_center(param_name: str, data: numpy.typing.NDArray, params: lmfit.parameter.Parameters) None[source]#
- _center_and_fit_sinus(y: numpy.typing.NDArray, x: numpy.typing.NDArray) lmfit.model.ModelResult[source]#
- class ConditionalOscillationAnalysis(dataset: xarray.Dataset | None = None, tuid: quantify_core.data.types.TUID | str | None = None, label: str = '', settings_overwrite: dict | None = None, plot_figures: bool = True)[source]#
Bases:
qblox_scheduler.analysis.base_analysis.BaseAnalysisAnalysis class for the conditional oscillation experiment.
For a reference to the conditional oscillation experiment, please see section D in the supplemental material of this paper: https://arxiv.org/abs/1903.02492
Example
import warnings from qblox_scheduler.analysis.conditional_oscillation_analysis import ( ConditionalOscillationAnalysis ) with warnings.catch_warnings(): warnings.simplefilter("ignore") from qblox_scheduler.analysis.data_handling import OutputDirectoryManager as mng # load example data test_data_dir = "../tests/test_data" mng.set_datadir(test_data_dir) # run analysis and plot results analysis = ( ConditionalOscillationAnalysis(tuid="20230509-165523-132-dcfea7") .run() .display_figs_mpl() )